![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vr1val | Structured version Visualization version GIF version |
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1𝑜 = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
vr1val.1 | ⊢ 𝑋 = (var1‘𝑅) |
Ref | Expression |
---|---|
vr1val | ⊢ 𝑋 = ((1𝑜 mVar 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vr1val.1 | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
2 | oveq2 6800 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1𝑜 mVar 𝑟) = (1𝑜 mVar 𝑅)) | |
3 | 2 | fveq1d 6334 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1𝑜 mVar 𝑟)‘∅) = ((1𝑜 mVar 𝑅)‘∅)) |
4 | df-vr1 19765 | . . . 4 ⊢ var1 = (𝑟 ∈ V ↦ ((1𝑜 mVar 𝑟)‘∅)) | |
5 | fvex 6342 | . . . 4 ⊢ ((1𝑜 mVar 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 6424 | . . 3 ⊢ (𝑅 ∈ V → (var1‘𝑅) = ((1𝑜 mVar 𝑅)‘∅)) |
7 | 1, 6 | syl5eq 2816 | . 2 ⊢ (𝑅 ∈ V → 𝑋 = ((1𝑜 mVar 𝑅)‘∅)) |
8 | fvprc 6326 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (var1‘𝑅) = ∅) | |
9 | 0fv 6368 | . . . 4 ⊢ (∅‘∅) = ∅ | |
10 | 8, 1, 9 | 3eqtr4g 2829 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑋 = (∅‘∅)) |
11 | df-mvr 19571 | . . . . . 6 ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) | |
12 | 11 | reldmmpt2 6917 | . . . . 5 ⊢ Rel dom mVar |
13 | 12 | ovprc2 6829 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1𝑜 mVar 𝑅) = ∅) |
14 | 13 | fveq1d 6334 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((1𝑜 mVar 𝑅)‘∅) = (∅‘∅)) |
15 | 10, 14 | eqtr4d 2807 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑋 = ((1𝑜 mVar 𝑅)‘∅)) |
16 | 7, 15 | pm2.61i 176 | 1 ⊢ 𝑋 = ((1𝑜 mVar 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1630 ∈ wcel 2144 {crab 3064 Vcvv 3349 ∅c0 4061 ifcif 4223 ↦ cmpt 4861 ◡ccnv 5248 “ cima 5252 ‘cfv 6031 (class class class)co 6792 1𝑜c1o 7705 ↑𝑚 cmap 8008 Fincfn 8108 0cc0 10137 1c1 10138 ℕcn 11221 ℕ0cn0 11493 0gc0g 16307 1rcur 18708 mVar cmvr 19566 var1cv1 19760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-mvr 19571 df-vr1 19765 |
This theorem is referenced by: vr1cl2 19777 vr1cl 19801 subrgvr1 19845 subrgvr1cl 19846 coe1tm 19857 ply1coe 19880 evl1var 19914 evls1var 19916 |
Copyright terms: Public domain | W3C validator |