![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vprc | Structured version Visualization version GIF version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc | ⊢ ¬ V ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 4947 | . . 3 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
2 | vex 3343 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 2 | tbt 358 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
4 | 3 | albii 1896 | . . . . 5 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) |
5 | dfcleq 2754 | . . . . 5 ⊢ (𝑥 = V ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ V)) | |
6 | 4, 5 | bitr4i 267 | . . . 4 ⊢ (∀𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = V) |
7 | 6 | exbii 1923 | . . 3 ⊢ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝑥 = V) |
8 | 1, 7 | mtbi 311 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V |
9 | isset 3347 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
10 | 8, 9 | mtbir 312 | 1 ⊢ ¬ V ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1630 = wceq 1632 ∃wex 1853 ∈ wcel 2139 Vcvv 3340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1635 df-ex 1854 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-v 3342 |
This theorem is referenced by: nvel 4949 vnex 4950 intex 4969 intnex 4970 abnex 7130 snnexOLD 7132 iprc 7266 opabn1stprc 7395 elfi2 8485 fi0 8491 ruALT 8673 cardmin2 9014 00lsp 19183 fveqvfvv 41710 ndmaovcl 41789 |
Copyright terms: Public domain | W3C validator |