![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvolmbllem | Structured version Visualization version GIF version |
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvolmbllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vonvolmbllem.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
vonvolmbllem.e | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) |
vonvolmbllem.x | ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) |
vonvolmbllem.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
Ref | Expression |
---|---|
vonvolmbllem | ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2913 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑌 | |
2 | vonvolmbllem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | vonvolmbllem.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) | |
4 | vonvolmbllem.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
5 | 1, 2, 3, 4 | ssmapsn 39926 | . . . . . . 7 ⊢ (𝜑 → 𝑋 = (𝑌 ↑𝑚 {𝐴})) |
6 | 5 | ineq1d 3964 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ↑𝑚 {𝐴}) ∩ (𝐵 ↑𝑚 {𝐴}))) |
7 | reex 10229 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ∈ V) |
9 | 3 | sselda 3752 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑𝑚 {𝐴})) |
10 | elmapi 8031 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℝ ↑𝑚 {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
11 | 9, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶ℝ) |
12 | frn 6193 | . . . . . . . . . . . 12 ⊢ (𝑓:{𝐴}⟶ℝ → ran 𝑓 ⊆ ℝ) | |
13 | 11, 12 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
14 | 13 | ralrimiva 3115 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
15 | iunss 4695 | . . . . . . . . . 10 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
16 | 14, 15 | sylibr 224 | . . . . . . . . 9 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
17 | 4, 16 | syl5eqss 3798 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
18 | 8, 17 | ssexd 4939 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
19 | vonvolmbllem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
20 | 8, 19 | ssexd 4939 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
21 | snex 5036 | . . . . . . . 8 ⊢ {𝐴} ∈ V | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ∈ V) |
23 | 18, 20, 22 | inmap 39919 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑𝑚 {𝐴}) ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) |
24 | 6, 23 | eqtrd 2805 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) |
25 | 24 | fveq2d 6336 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑𝑚 {𝐴}))) |
26 | 17 | ssinss1d 39735 | . . . . 5 ⊢ (𝜑 → (𝑌 ∩ 𝐵) ⊆ ℝ) |
27 | 2, 26 | ovnovol 41393 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑌 ∩ 𝐵))) |
28 | 25, 27 | eqtrd 2805 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) = (vol*‘(𝑌 ∩ 𝐵))) |
29 | 5 | difeq1d 3878 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ↑𝑚 {𝐴}) ∖ (𝐵 ↑𝑚 {𝐴}))) |
30 | 18, 20, 2 | difmapsn 39922 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑𝑚 {𝐴}) ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) |
31 | 29, 30 | eqtrd 2805 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) |
32 | 31 | fveq2d 6336 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑𝑚 {𝐴}))) |
33 | 17 | ssdifssd 3899 | . . . . 5 ⊢ (𝜑 → (𝑌 ∖ 𝐵) ⊆ ℝ) |
34 | 2, 33 | ovnovol 41393 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑌 ∖ 𝐵))) |
35 | 32, 34 | eqtrd 2805 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴}))) = (vol*‘(𝑌 ∖ 𝐵))) |
36 | 28, 35 | oveq12d 6811 | . 2 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
37 | 5 | fveq2d 6336 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌 ↑𝑚 {𝐴}))) |
38 | 2, 17 | ovnovol 41393 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑌 ↑𝑚 {𝐴})) = (vol*‘𝑌)) |
39 | 18, 17 | elpwd 4306 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝒫 ℝ) |
40 | vonvolmbllem.e | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) | |
41 | fveq2 6332 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌)) | |
42 | ineq1 3958 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐵) = (𝑌 ∩ 𝐵)) | |
43 | 42 | fveq2d 6336 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∩ 𝐵)) = (vol*‘(𝑌 ∩ 𝐵))) |
44 | difeq1 3872 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∖ 𝐵) = (𝑌 ∖ 𝐵)) | |
45 | 44 | fveq2d 6336 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∖ 𝐵)) = (vol*‘(𝑌 ∖ 𝐵))) |
46 | 43, 45 | oveq12d 6811 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
47 | 41, 46 | eqeq12d 2786 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵))))) |
48 | 47 | rspcva 3458 | . . . 4 ⊢ ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
49 | 39, 40, 48 | syl2anc 573 | . . 3 ⊢ (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
50 | 37, 38, 49 | 3eqtrd 2809 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
51 | 36, 50 | eqtr4d 2808 | 1 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ∖ cdif 3720 ∩ cin 3722 ⊆ wss 3723 𝒫 cpw 4297 {csn 4316 ∪ ciun 4654 ran crn 5250 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ↑𝑚 cmap 8009 ℝcr 10137 +𝑒 cxad 12149 vol*covol 23450 voln*covoln 41270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-rlim 14428 df-sum 14625 df-prod 14843 df-rest 16291 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-top 20919 df-topon 20936 df-bases 20971 df-cmp 21411 df-ovol 23452 df-vol 23453 df-sumge0 41097 df-ovoln 41271 |
This theorem is referenced by: vonvolmbl 41395 |
Copyright terms: Public domain | W3C validator |