![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvol2 | Structured version Visualization version GIF version |
Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvol2.f | ⊢ Ⅎ𝑓𝑌 |
vonvol2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vonvol2.x | ⊢ (𝜑 → 𝑋 ∈ dom (voln‘{𝐴})) |
vonvol2.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
Ref | Expression |
---|---|
vonvol2 | ⊢ (𝜑 → ((voln‘{𝐴})‘𝑋) = (vol‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonvol2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | vonvol2.f | . . . . . . 7 ⊢ Ⅎ𝑓𝑌 | |
3 | snfi 8079 | . . . . . . . . 9 ⊢ {𝐴} ∈ Fin | |
4 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → {𝐴} ∈ Fin) |
5 | vonvol2.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ dom (voln‘{𝐴})) | |
6 | 4, 5 | vonmblss2 41177 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) |
7 | vonvol2.y | . . . . . . 7 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
8 | 2, 1, 6, 7 | ssmapsn 39722 | . . . . . 6 ⊢ (𝜑 → 𝑋 = (𝑌 ↑𝑚 {𝐴})) |
9 | 8 | eqcomd 2657 | . . . . 5 ⊢ (𝜑 → (𝑌 ↑𝑚 {𝐴}) = 𝑋) |
10 | 9, 5 | eqeltrd 2730 | . . . 4 ⊢ (𝜑 → (𝑌 ↑𝑚 {𝐴}) ∈ dom (voln‘{𝐴})) |
11 | 6 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) |
12 | simpr 476 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ 𝑋) | |
13 | 11, 12 | sseldd 3637 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑𝑚 {𝐴})) |
14 | elmapi 7921 | . . . . . . . . 9 ⊢ (𝑓 ∈ (ℝ ↑𝑚 {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
15 | frn 6091 | . . . . . . . . 9 ⊢ (𝑓:{𝐴}⟶ℝ → ran 𝑓 ⊆ ℝ) | |
16 | 13, 14, 15 | 3syl 18 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
17 | 16 | ralrimiva 2995 | . . . . . . 7 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
18 | iunss 4593 | . . . . . . 7 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
19 | 17, 18 | sylibr 224 | . . . . . 6 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
20 | 7, 19 | syl5eqss 3682 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
21 | 1, 20 | vonvolmbl 41196 | . . . 4 ⊢ (𝜑 → ((𝑌 ↑𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝑌 ∈ dom vol)) |
22 | 10, 21 | mpbid 222 | . . 3 ⊢ (𝜑 → 𝑌 ∈ dom vol) |
23 | 1, 22 | vonvol 41197 | . 2 ⊢ (𝜑 → ((voln‘{𝐴})‘(𝑌 ↑𝑚 {𝐴})) = (vol‘𝑌)) |
24 | 9 | eqcomd 2657 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑌 ↑𝑚 {𝐴})) |
25 | 24 | fveq2d 6233 | . 2 ⊢ (𝜑 → ((voln‘{𝐴})‘𝑋) = ((voln‘{𝐴})‘(𝑌 ↑𝑚 {𝐴}))) |
26 | eqidd 2652 | . 2 ⊢ (𝜑 → (vol‘𝑌) = (vol‘𝑌)) | |
27 | 23, 25, 26 | 3eqtr4d 2695 | 1 ⊢ (𝜑 → ((voln‘{𝐴})‘𝑋) = (vol‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Ⅎwnfc 2780 ∀wral 2941 ⊆ wss 3607 {csn 4210 ∪ ciun 4552 dom cdm 5143 ran crn 5144 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 Fincfn 7997 ℝcr 9973 volcvol 23278 volncvoln 41073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cc 9295 ax-ac2 9323 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-acn 8806 df-ac 8977 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-prod 14680 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-rest 16130 df-0g 16149 df-topgen 16151 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-subg 17638 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-cnfld 19795 df-top 20747 df-topon 20764 df-bases 20798 df-cmp 21238 df-ovol 23279 df-vol 23280 df-sumge0 40898 df-ome 41025 df-caragen 41027 df-ovoln 41072 df-voln 41074 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |