Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioo Structured version   Visualization version   GIF version

Theorem vonioo 41402
 Description: The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioo.x (𝜑𝑋 ∈ Fin)
vonioo.a (𝜑𝐴:𝑋⟶ℝ)
vonioo.b (𝜑𝐵:𝑋⟶ℝ)
vonioo.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioo.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonioo (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑘,𝐿   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑎,𝑏)

Proof of Theorem vonioo
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioo.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonioo.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 472 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6188 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 473 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 222 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonioo.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 472 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6188 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 473 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 222 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 41303 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2766 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6352 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonioo.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
17 ixpeq1 8085 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1816, 17eqtrd 2794 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1914, 18fveq12d 6358 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
2019adantl 473 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
21 0fin 8353 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2760 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
24 ressxr 10275 . . . . . . . 8 ℝ ⊆ ℝ*
2524a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → ℝ ⊆ ℝ*)
266, 25fssd 6218 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ*)
2711, 25fssd 6218 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ*)
2822, 23, 26, 27ioovonmbl 41397 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘∅))
2928von0val 41391 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))) = 0)
3020, 29eqtrd 2794 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
31 fveq2 6352 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3231oveqd 6830 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3332adantl 473 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3413, 30, 333eqtr4d 2804 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
35 neqne 2940 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3635adantl 473 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
37 nfv 1992 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
38 nfra1 3079 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)
3937, 38nfan 1977 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
402ffvelrnda 6522 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
417ffvelrnda 6522 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
42 volico 40703 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4340, 41, 42syl2anc 696 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4443ad4ant14 1209 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
45 rspa 3068 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
4645iftrued 4238 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4746adantll 752 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4844, 47eqtrd 2794 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4948ex 449 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
5039, 49ralrimi 3095 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
5150prodeq2d 14851 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
5251eqcomd 2766 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
53 fveq2 6352 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
54 fveq2 6352 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5553, 54breq12d 4817 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) < (𝐵𝑘) ↔ (𝐴𝑗) < (𝐵𝑗)))
5655cbvralv 3310 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5756biimpi 206 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5857adantl 473 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
59 vonioo.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
6059adantr 472 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
6160adantr 472 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ∈ Fin)
622adantr 472 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
6362adantr 472 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
647adantr 472 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6564adantr 472 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
66 simpr 479 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6766adantr 472 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ≠ ∅)
6856, 45sylanbr 491 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
6968adantll 752 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
70 fveq2 6352 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
7170oveq1d 6828 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑚)))
7271cbvmptv 4902 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚)))
7372a1i 11 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
74 oveq2 6821 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7574oveq2d 6829 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑛)))
7675mpteq2dv 4897 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7773, 76eqtrd 2794 . . . . . . . 8 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7877cbvmptv 4902 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
79 nfcv 2902 . . . . . . . 8 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))
80 nfcv 2902 . . . . . . . . 9 𝑚𝑋
81 nffvmpt1 6360 . . . . . . . . . . 11 𝑚((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)
82 nfcv 2902 . . . . . . . . . . 11 𝑚𝑘
8381, 82nffv 6359 . . . . . . . . . 10 𝑚(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)
84 nfcv 2902 . . . . . . . . . 10 𝑚[,)
85 nfcv 2902 . . . . . . . . . 10 𝑚(𝐵𝑘)
8683, 84, 85nfov 6839 . . . . . . . . 9 𝑚((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
8780, 86nfixp 8093 . . . . . . . 8 𝑚X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
88 fveq2 6352 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛))
8988fveq1d 6354 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
9089oveq1d 6828 . . . . . . . . 9 (𝑚 = 𝑛 → ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9190ixpeq2dv 8090 . . . . . . . 8 (𝑚 = 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9279, 87, 91cbvmpt 4901 . . . . . . 7 (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9361, 63, 65, 67, 69, 15, 78, 92vonioolem2 41401 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
9458, 93syldan 488 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
951, 60, 66, 62, 64hoidmvn0val 41304 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9695adantr 472 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9752, 94, 963eqtr4d 2804 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
98 rexnal 3133 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
9998bicomi 214 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
10099biimpi 206 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
101100adantl 473 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
102 simpr 479 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ¬ (𝐴𝑘) < (𝐵𝑘))
10341adantr 472 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
10440adantr 472 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
105103, 104lenltd 10375 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ ¬ (𝐴𝑘) < (𝐵𝑘)))
106102, 105mpbird 247 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
107106ex 449 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) < (𝐵𝑘) → (𝐵𝑘) ≤ (𝐴𝑘)))
108107reximdva 3155 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
109108adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
110101, 109mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
111110adantlr 753 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
112 nfcv 2902 . . . . . . . . 9 𝑘(voln‘𝑋)
113 nfixp1 8094 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
11415, 113nfcxfr 2900 . . . . . . . . 9 𝑘𝐼
115112, 114nffv 6359 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
116 nfcv 2902 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
117115, 116nfeq 2914 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11859vonmea 41294 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
119118mea0 41174 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1201193ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12115a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
122 simp2 1132 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝑘𝑋)
123 simp3 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
12424, 40sseldi 3742 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
1251243adant3 1127 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴𝑘) ∈ ℝ*)
12624, 41sseldi 3742 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
1271263adant3 1127 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ∈ ℝ*)
128 ioo0 12393 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
129125, 127, 128syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
130123, 129mpbird 247 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
131 rspe 3141 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)(,)(𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
132122, 130, 131syl2anc 696 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
133 ixp0 8107 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
134132, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
135121, 134eqtrd 2794 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = ∅)
136135fveq2d 6356 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
137 ne0i 4064 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
138137adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
139138, 95syldan 488 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1401393adant3 1127 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
141 eleq1w 2822 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
142 fveq2 6352 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
143142, 70breq12d 4817 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
144141, 1433anbi23d 1551 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘))))
145144imbi1d 330 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
146 nfv 1992 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
147593ad2ant1 1128 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
148 volicore 41301 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
14940, 41, 148syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
150149recnd 10260 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1511503ad2antl1 1201 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
152 simp2 1132 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
15353, 54oveq12d 6831 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
154153fveq2d 6356 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
155154adantl 473 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1562ffvelrnda 6522 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1577ffvelrnda 6522 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
158 volico 40703 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
159156, 157, 158syl2anc 696 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1601593adant3 1127 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
161 simp3 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
162157, 156lenltd 10375 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
1631623adant3 1127 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
164161, 163mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
165164iffalsed 4241 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
166160, 165eqtrd 2794 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
167166adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168155, 167eqtrd 2794 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
169146, 147, 151, 152, 168fprodeq0g 14924 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170145, 169chvarv 2408 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171140, 170eqtrd 2794 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
172120, 136, 1713eqtr4d 2804 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1731723exp 1113 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
174173adantr 472 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17537, 117, 174rexlimd 3164 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
176175imp 444 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
177111, 176syldan 488 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17897, 177pm2.61dan 867 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17936, 178syldan 488 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18034, 179pm2.61dan 867 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ∃wrex 3051   ⊆ wss 3715  ∅c0 4058  ifcif 4230   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815   ↑𝑚 cmap 8023  Xcixp 8074  Fincfn 8121  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   + caddc 10131  ℝ*cxr 10265   < clt 10266   ≤ cle 10267   − cmin 10458   / cdiv 10876  ℕcn 11212  (,)cioo 12368  [,)cico 12370  ∏cprod 14834  volcvol 23432  volncvoln 41258 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cc 9449  ax-ac2 9477  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-ac 9129  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419  df-sum 14616  df-prod 14835  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-pws 16312  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-field 18952  df-subrg 18980  df-abv 19019  df-staf 19047  df-srng 19048  df-lmod 19067  df-lss 19135  df-lmhm 19224  df-lvec 19305  df-sra 19374  df-rgmod 19375  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-refld 20153  df-phl 20173  df-dsmm 20278  df-frlm 20293  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cn 21233  df-cnp 21234  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-xms 22326  df-ms 22327  df-tms 22328  df-nm 22588  df-ngp 22589  df-tng 22590  df-nrg 22591  df-nlm 22592  df-cncf 22882  df-clm 23063  df-cph 23168  df-tch 23169  df-rrx 23373  df-ovol 23433  df-vol 23434  df-salg 41032  df-sumge0 41083  df-mea 41170  df-ome 41210  df-caragen 41212  df-ovoln 41257  df-voln 41259 This theorem is referenced by:  vonn0ioo  41407
 Copyright terms: Public domain W3C validator