Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voncmpl Structured version   Visualization version   GIF version

Theorem voncmpl 41361
Description: The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31 (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
voncmpl.x (𝜑𝑋 ∈ Fin)
voncmpl.s 𝑆 = dom (voln‘𝑋)
voncmpl.e (𝜑𝐸 ∈ dom (voln‘𝑋))
voncmpl.z (𝜑 → ((voln‘𝑋)‘𝐸) = 0)
voncmpl.f (𝜑𝐹𝐸)
Assertion
Ref Expression
voncmpl (𝜑𝐹𝑆)

Proof of Theorem voncmpl
StepHypRef Expression
1 voncmpl.x . . . 4 (𝜑𝑋 ∈ Fin)
21ovnome 41313 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
3 eqid 2774 . . 3 dom (voln*‘𝑋) = dom (voln*‘𝑋)
4 voncmpl.f . . . 4 (𝜑𝐹𝐸)
51dmvon 41346 . . . . . . 7 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
6 eqid 2774 . . . . . . . . 9 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
76caragenss 41244 . . . . . . . 8 ((voln*‘𝑋) ∈ OutMeas → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋))
82, 7syl 17 . . . . . . 7 (𝜑 → (CaraGen‘(voln*‘𝑋)) ⊆ dom (voln*‘𝑋))
95, 8eqsstrd 3795 . . . . . 6 (𝜑 → dom (voln‘𝑋) ⊆ dom (voln*‘𝑋))
10 voncmpl.e . . . . . 6 (𝜑𝐸 ∈ dom (voln‘𝑋))
119, 10sseldd 3759 . . . . 5 (𝜑𝐸 ∈ dom (voln*‘𝑋))
12 elssuni 4614 . . . . 5 (𝐸 ∈ dom (voln*‘𝑋) → 𝐸 dom (voln*‘𝑋))
1311, 12syl 17 . . . 4 (𝜑𝐸 dom (voln*‘𝑋))
144, 13sstrd 3768 . . 3 (𝜑𝐹 dom (voln*‘𝑋))
15 voncmpl.z . . . . . . 7 (𝜑 → ((voln‘𝑋)‘𝐸) = 0)
1615eqcomd 2780 . . . . . 6 (𝜑 → 0 = ((voln‘𝑋)‘𝐸))
171vonval 41280 . . . . . . 7 (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))))
1817fveq1d 6350 . . . . . 6 (𝜑 → ((voln‘𝑋)‘𝐸) = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸))
1916, 18eqtrd 2808 . . . . 5 (𝜑 → 0 = (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸))
20 voncmpl.s . . . . . . . . 9 𝑆 = dom (voln‘𝑋)
2120a1i 11 . . . . . . . 8 (𝜑𝑆 = dom (voln‘𝑋))
2221, 5eqtr2d 2809 . . . . . . 7 (𝜑 → (CaraGen‘(voln*‘𝑋)) = 𝑆)
2322reseq2d 5546 . . . . . 6 (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) = ((voln*‘𝑋) ↾ 𝑆))
2423fveq1d 6350 . . . . 5 (𝜑 → (((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))‘𝐸) = (((voln*‘𝑋) ↾ 𝑆)‘𝐸))
2510, 20syl6eleqr 2864 . . . . . 6 (𝜑𝐸𝑆)
26 fvres 6365 . . . . . 6 (𝐸𝑆 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸))
2725, 26syl 17 . . . . 5 (𝜑 → (((voln*‘𝑋) ↾ 𝑆)‘𝐸) = ((voln*‘𝑋)‘𝐸))
2819, 24, 273eqtrrd 2813 . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐸) = 0)
292, 3, 13, 28, 4omess0 41274 . . 3 (𝜑 → ((voln*‘𝑋)‘𝐹) = 0)
302, 3, 14, 29, 6caragencmpl 41275 . 2 (𝜑𝐹 ∈ (CaraGen‘(voln*‘𝑋)))
3130, 22eleqtrd 2855 1 (𝜑𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1634  wcel 2148  wss 3729   cuni 4585  dom cdm 5263  cres 5265  cfv 6042  Fincfn 8130  0cc0 10159  OutMeascome 41229  CaraGenccaragen 41231  voln*covoln 41276  volncvoln 41278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-inf2 8723  ax-cc 9480  ax-ac2 9508  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-pre-sup 10237  ax-addf 10238  ax-mulf 10239
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-fal 1640  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-disj 4766  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-se 5223  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-isom 6051  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-of 7065  df-om 7234  df-1st 7336  df-2nd 7337  df-tpos 7525  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-2o 7735  df-oadd 7738  df-er 7917  df-map 8032  df-pm 8033  df-ixp 8084  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-fi 8494  df-sup 8525  df-inf 8526  df-oi 8592  df-card 8986  df-acn 8989  df-ac 9160  df-cda 9213  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-div 10908  df-nn 11244  df-2 11302  df-3 11303  df-4 11304  df-5 11305  df-6 11306  df-7 11307  df-8 11308  df-9 11309  df-n0 11517  df-z 11602  df-dec 11718  df-uz 11911  df-q 12014  df-rp 12053  df-xneg 12168  df-xadd 12169  df-xmul 12170  df-ioo 12403  df-ico 12405  df-icc 12406  df-fz 12556  df-fzo 12696  df-fl 12823  df-seq 13031  df-exp 13090  df-hash 13344  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-clim 14449  df-rlim 14450  df-sum 14647  df-prod 14865  df-struct 16086  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-mulr 16183  df-starv 16184  df-tset 16188  df-ple 16189  df-ds 16192  df-unif 16193  df-rest 16311  df-0g 16330  df-topgen 16332  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-grp 17653  df-minusg 17654  df-subg 17819  df-cmn 18422  df-abl 18423  df-mgp 18718  df-ur 18730  df-ring 18777  df-cring 18778  df-oppr 18851  df-dvdsr 18869  df-unit 18870  df-invr 18900  df-dvr 18911  df-drng 18979  df-psmet 19973  df-xmet 19974  df-met 19975  df-bl 19976  df-mopn 19977  df-cnfld 19982  df-top 20939  df-topon 20956  df-bases 20991  df-cmp 21431  df-ovol 23472  df-vol 23473  df-sumge0 41103  df-ome 41230  df-caragen 41232  df-ovoln 41277  df-voln 41279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator