MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup2 Structured version   Visualization version   GIF version

Theorem volsup2 23593
Description: The volume of 𝐴 is the supremum of the sequence vol*‘(𝐴 ∩ (-𝑛[,]𝑛)) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volsup2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem volsup2
Dummy variables 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1132 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴))
2 rexr 10287 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
323ad2ant2 1128 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ*)
4 iccssxr 12461 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
5 volf 23517 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
65ffvelrni 6501 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
74, 6sseldi 3750 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
873ad2ant1 1127 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
9 xrltnle 10307 . . . . . 6 ((𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵))
103, 8, 9syl2anc 573 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐵 < (vol‘𝐴) ↔ ¬ (vol‘𝐴) ≤ 𝐵))
111, 10mpbid 222 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ (vol‘𝐴) ≤ 𝐵)
12 negeq 10475 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → -𝑚 = -𝑛)
13 id 22 . . . . . . . . . . . . . 14 (𝑚 = 𝑛𝑚 = 𝑛)
1412, 13oveq12d 6811 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (-𝑚[,]𝑚) = (-𝑛[,]𝑛))
1514ineq2d 3965 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-𝑛[,]𝑛)))
16 eqid 2771 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))
17 ovex 6823 . . . . . . . . . . . . 13 (-𝑛[,]𝑛) ∈ V
1817inex2 4934 . . . . . . . . . . . 12 (𝐴 ∩ (-𝑛[,]𝑛)) ∈ V
1915, 16, 18fvmpt 6424 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛)))
2019iuneq2i 4673 . . . . . . . . . 10 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛))
21 iunin2 4718 . . . . . . . . . 10 𝑛 ∈ ℕ (𝐴 ∩ (-𝑛[,]𝑛)) = (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
2220, 21eqtri 2793 . . . . . . . . 9 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
23 simpl1 1227 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
24 nnre 11229 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
2524adantl 467 . . . . . . . . . . . . . . 15 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
2625renegcld 10659 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ)
27 iccmbl 23554 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
2826, 25, 27syl2anc 573 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ∈ dom vol)
29 inmbl 23530 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
3023, 28, 29syl2anc 573 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
3115cbvmptv 4884 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = (𝑛 ∈ ℕ ↦ (𝐴 ∩ (-𝑛[,]𝑛)))
3230, 31fmptd 6527 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol)
33 ffn 6185 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ)
3432, 33syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ)
35 fniunfv 6648 . . . . . . . . . 10 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))
3634, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))
37 mblss 23519 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
38373ad2ant1 1127 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ⊆ ℝ)
3938sselda 3752 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
40 recn 10228 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4140abscld 14383 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
42 arch 11491 . . . . . . . . . . . . . . . 16 ((abs‘𝑥) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛)
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛)
44 ltle 10328 . . . . . . . . . . . . . . . . . 18 (((abs‘𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛))
4541, 24, 44syl2an 583 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) < 𝑛 → (abs‘𝑥) ≤ 𝑛))
46 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛))
47463expib 1116 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((-𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
4847adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((-𝑛𝑥𝑥𝑛) → (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
49 absle 14263 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛𝑥𝑥𝑛)))
5024, 49sylan2 580 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) ≤ 𝑛 ↔ (-𝑛𝑥𝑥𝑛)))
5124adantl 467 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
5251renegcld 10659 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℝ)
53 elicc2 12443 . . . . . . . . . . . . . . . . . . 19 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
5452, 51, 53syl2anc 573 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ (-𝑛[,]𝑛) ↔ (𝑥 ∈ ℝ ∧ -𝑛𝑥𝑥𝑛)))
5548, 50, 543imtr4d 283 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) ≤ 𝑛𝑥 ∈ (-𝑛[,]𝑛)))
5645, 55syld 47 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((abs‘𝑥) < 𝑛𝑥 ∈ (-𝑛[,]𝑛)))
5756reximdva 3165 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (∃𝑛 ∈ ℕ (abs‘𝑥) < 𝑛 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)))
5843, 57mpd 15 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
5939, 58syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑥𝐴) → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
6059ex 397 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛)))
61 eliun 4658 . . . . . . . . . . . 12 (𝑥 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (-𝑛[,]𝑛))
6260, 61syl6ibr 242 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝑥𝐴𝑥 𝑛 ∈ ℕ (-𝑛[,]𝑛)))
6362ssrdv 3758 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → 𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛))
64 df-ss 3737 . . . . . . . . . 10 (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛) ↔ (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴)
6563, 64sylib 208 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (𝐴 𝑛 ∈ ℕ (-𝑛[,]𝑛)) = 𝐴)
6622, 36, 653eqtr3a 2829 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) = 𝐴)
6766fveq2d 6336 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = (vol‘𝐴))
68 peano2re 10411 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
6925, 68syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
7069renegcld 10659 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ∈ ℝ)
7125lep1d 11157 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝑛 ≤ (𝑛 + 1))
7225, 69lenegd 10808 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 ≤ (𝑛 + 1) ↔ -(𝑛 + 1) ≤ -𝑛))
7371, 72mpbid 222 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → -(𝑛 + 1) ≤ -𝑛)
74 iccss 12446 . . . . . . . . . . . 12 (((-(𝑛 + 1) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) ∧ (-(𝑛 + 1) ≤ -𝑛𝑛 ≤ (𝑛 + 1))) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)))
7570, 69, 73, 71, 74syl22anc 1477 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)))
76 sslin 3987 . . . . . . . . . . 11 ((-𝑛[,]𝑛) ⊆ (-(𝑛 + 1)[,](𝑛 + 1)) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
7775, 76syl 17 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐴 ∩ (-𝑛[,]𝑛)) ⊆ (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
7819adantl 467 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) = (𝐴 ∩ (-𝑛[,]𝑛)))
79 peano2nn 11234 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
8079adantl 467 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
81 negeq 10475 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → -𝑚 = -(𝑛 + 1))
82 id 22 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1))
8381, 82oveq12d 6811 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (-𝑚[,]𝑚) = (-(𝑛 + 1)[,](𝑛 + 1)))
8483ineq2d 3965 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (𝐴 ∩ (-𝑚[,]𝑚)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
85 ovex 6823 . . . . . . . . . . . . 13 (-(𝑛 + 1)[,](𝑛 + 1)) ∈ V
8685inex2 4934 . . . . . . . . . . . 12 (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))) ∈ V
8784, 16, 86fvmpt 6424 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
8880, 87syl 17 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)) = (𝐴 ∩ (-(𝑛 + 1)[,](𝑛 + 1))))
8977, 78, 883sstr4d 3797 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)))
9089ralrimiva 3115 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1)))
91 volsup 23544 . . . . . . . 8 (((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘(𝑛 + 1))) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9232, 90, 91syl2anc 573 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9367, 92eqtr3d 2807 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) = sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ))
9493breq1d 4796 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵))
95 imassrn 5618 . . . . . . 7 (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ran vol
96 frn 6193 . . . . . . . . 9 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
975, 96ax-mp 5 . . . . . . . 8 ran vol ⊆ (0[,]+∞)
9897, 4sstri 3761 . . . . . . 7 ran vol ⊆ ℝ*
9995, 98sstri 3761 . . . . . 6 (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ℝ*
100 supxrleub 12361 . . . . . 6 (((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))) ⊆ ℝ*𝐵 ∈ ℝ*) → (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵))
10199, 3, 100sylancr 575 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (sup((vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵))
102 ffn 6185 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
1035, 102ax-mp 5 . . . . . . 7 vol Fn dom vol
104 frn 6193 . . . . . . . 8 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))):ℕ⟶dom vol → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol)
10532, 104syl 17 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol)
106 breq1 4789 . . . . . . . 8 (𝑛 = (vol‘𝑧) → (𝑛𝐵 ↔ (vol‘𝑧) ≤ 𝐵))
107106ralima 6641 . . . . . . 7 ((vol Fn dom vol ∧ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) ⊆ dom vol) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵))
108103, 105, 107sylancr 575 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵))
109 fveq2 6332 . . . . . . . . . 10 (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → (vol‘𝑧) = (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)))
110109breq1d 4796 . . . . . . . . 9 (𝑧 = ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛) → ((vol‘𝑧) ≤ 𝐵 ↔ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
111110ralrn 6505 . . . . . . . 8 ((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))) Fn ℕ → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
11234, 111syl 17 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵))
11319fveq2d 6336 . . . . . . . . 9 (𝑛 ∈ ℕ → (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
114113breq1d 4796 . . . . . . . 8 (𝑛 ∈ ℕ → ((vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
115114ralbiia 3128 . . . . . . 7 (∀𝑛 ∈ ℕ (vol‘((𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))‘𝑛)) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
116112, 115syl6bb 276 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑧 ∈ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚)))(vol‘𝑧) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
117108, 116bitrd 268 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∀𝑛 ∈ (vol “ ran (𝑚 ∈ ℕ ↦ (𝐴 ∩ (-𝑚[,]𝑚))))𝑛𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
11894, 101, 1173bitrd 294 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ((vol‘𝐴) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
11911, 118mtbid 313 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
120 rexnal 3143 . . 3 (∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵 ↔ ¬ ∀𝑛 ∈ ℕ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
121119, 120sylibr 224 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵)
1223adantr 466 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
1235ffvelrni 6501 . . . . . 6 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞))
1244, 123sseldi 3750 . . . . 5 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
12530, 124syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
126 xrltnle 10307 . . . 4 ((𝐵 ∈ ℝ* ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
127122, 125, 126syl2anc 573 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) ∧ 𝑛 ∈ ℕ) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
128127rexbidva 3197 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → (∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ≤ 𝐵))
129121, 128mpbird 247 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  cin 3722  wss 3723   cuni 4574   ciun 4654   class class class wbr 4786  cmpt 4863  dom cdm 5249  ran crn 5250  cima 5252   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  supcsup 8502  cr 10137  0cc0 10138  1c1 10139   + caddc 10141  +∞cpnf 10273  *cxr 10275   < clt 10276  cle 10277  -cneg 10469  cn 11222  [,]cicc 12383  abscabs 14182  volcvol 23451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xadd 12152  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-xmet 19954  df-met 19955  df-ovol 23452  df-vol 23453
This theorem is referenced by:  volivth  23595
  Copyright terms: Public domain W3C validator