![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > volf | Structured version Visualization version GIF version |
Description: The domain and range of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
volf | ⊢ vol:dom vol⟶(0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolf 23442 | . . . . . 6 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | |
2 | ffun 6201 | . . . . . 6 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) → Fun vol*) | |
3 | funres 6082 | . . . . . 6 ⊢ (Fun vol* → Fun (vol* ↾ dom vol)) | |
4 | 1, 2, 3 | mp2b 10 | . . . . 5 ⊢ Fun (vol* ↾ dom vol) |
5 | volres 23488 | . . . . . 6 ⊢ vol = (vol* ↾ dom vol) | |
6 | 5 | funeqi 6062 | . . . . 5 ⊢ (Fun vol ↔ Fun (vol* ↾ dom vol)) |
7 | 4, 6 | mpbir 221 | . . . 4 ⊢ Fun vol |
8 | resss 5572 | . . . . . 6 ⊢ (vol* ↾ dom vol) ⊆ vol* | |
9 | 5, 8 | eqsstri 3768 | . . . . 5 ⊢ vol ⊆ vol* |
10 | fssxp 6213 | . . . . . 6 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* ⊆ (𝒫 ℝ × (0[,]+∞))) | |
11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ vol* ⊆ (𝒫 ℝ × (0[,]+∞)) |
12 | 9, 11 | sstri 3745 | . . . 4 ⊢ vol ⊆ (𝒫 ℝ × (0[,]+∞)) |
13 | 7, 12 | pm3.2i 470 | . . 3 ⊢ (Fun vol ∧ vol ⊆ (𝒫 ℝ × (0[,]+∞))) |
14 | funssxp 6214 | . . 3 ⊢ ((Fun vol ∧ vol ⊆ (𝒫 ℝ × (0[,]+∞))) ↔ (vol:dom vol⟶(0[,]+∞) ∧ dom vol ⊆ 𝒫 ℝ)) | |
15 | 13, 14 | mpbi 220 | . 2 ⊢ (vol:dom vol⟶(0[,]+∞) ∧ dom vol ⊆ 𝒫 ℝ) |
16 | 15 | simpli 476 | 1 ⊢ vol:dom vol⟶(0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ⊆ wss 3707 𝒫 cpw 4294 × cxp 5256 dom cdm 5258 ↾ cres 5260 Fun wfun 6035 ⟶wf 6037 (class class class)co 6805 ℝcr 10119 0cc0 10120 +∞cpnf 10255 [,]cicc 12363 vol*covol 23423 volcvol 23424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-n0 11477 df-z 11562 df-uz 11872 df-rp 12018 df-ico 12366 df-icc 12367 df-fz 12512 df-seq 12988 df-exp 13047 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-ovol 23425 df-vol 23426 |
This theorem is referenced by: volsup 23516 volsup2 23565 volivth 23567 itg1climres 23672 itg2const2 23699 itg2gt0 23718 areambl 24876 voliune 30593 volfiniune 30594 volmeas 30595 volsupnfl 33759 areacirc 33810 arearect 38295 areaquad 38296 volioof 40699 volicoff 40707 voliooicof 40708 fourierdlem87 40905 voliunsge0lem 41184 volmea 41186 hoidmv1lelem1 41303 hoidmv1lelem2 41304 hoidmv1lelem3 41305 ovolval4lem1 41361 ovolval5lem1 41364 |
Copyright terms: Public domain | W3C validator |