![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vmaval | Structured version Visualization version GIF version |
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmaval.1 | ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} |
Ref | Expression |
---|---|
vmaval | ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11227 | . . . . . 6 ⊢ ℕ ∈ V | |
2 | prmnn 15594 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
3 | 2 | ssriv 3754 | . . . . . 6 ⊢ ℙ ⊆ ℕ |
4 | 1, 3 | ssexi 4934 | . . . . 5 ⊢ ℙ ∈ V |
5 | 4 | rabex 4943 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V) |
7 | id 22 | . . . . . . 7 ⊢ (𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} → 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) | |
8 | breq2 4788 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
9 | 8 | rabbidv 3338 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
10 | vmaval.1 | . . . . . . . 8 ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
11 | 9, 10 | syl6eqr 2822 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = 𝑆) |
12 | 7, 11 | sylan9eqr 2826 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → 𝑠 = 𝑆) |
13 | 12 | fveq2d 6336 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → (♯‘𝑠) = (♯‘𝑆)) |
14 | 13 | eqeq1d 2772 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ((♯‘𝑠) = 1 ↔ (♯‘𝑆) = 1)) |
15 | 12 | unieqd 4582 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ∪ 𝑠 = ∪ 𝑆) |
16 | 15 | fveq2d 6336 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → (log‘∪ 𝑠) = (log‘∪ 𝑆)) |
17 | 14, 16 | ifbieq1d 4246 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
18 | 6, 17 | csbied 3707 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
19 | df-vma 25044 | . 2 ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0)) | |
20 | fvex 6342 | . . 3 ⊢ (log‘∪ 𝑆) ∈ V | |
21 | c0ex 10235 | . . 3 ⊢ 0 ∈ V | |
22 | 20, 21 | ifex 4293 | . 2 ⊢ if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0) ∈ V |
23 | 18, 19, 22 | fvmpt 6424 | 1 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {crab 3064 Vcvv 3349 ⦋csb 3680 ifcif 4223 ∪ cuni 4572 class class class wbr 4784 ‘cfv 6031 0cc0 10137 1c1 10138 ℕcn 11221 ♯chash 13320 ∥ cdvds 15188 ℙcprime 15591 logclog 24521 Λcvma 25038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-i2m1 10205 ax-1ne0 10206 ax-rrecex 10209 ax-cnre 10210 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-nn 11222 df-prm 15592 df-vma 25044 |
This theorem is referenced by: isppw 25060 vmappw 25062 |
Copyright terms: Public domain | W3C validator |