![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vma1 | Structured version Visualization version GIF version |
Description: The von Mangoldt function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.) |
Ref | Expression |
---|---|
vma1 | ⊢ (Λ‘1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 10261 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ) | |
2 | prmuz2 15615 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ≥‘2)) | |
3 | 2 | adantr 466 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ (ℤ≥‘2)) |
4 | eluz2b2 11969 | . . . . . . . . . 10 ⊢ (𝑝 ∈ (ℤ≥‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝)) | |
5 | 3, 4 | sylib 208 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝 ∈ ℕ ∧ 1 < 𝑝)) |
6 | 5 | simpld 482 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ) |
7 | 6 | nnred 11241 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℝ) |
8 | nnnn0 11506 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
9 | 8 | adantl 467 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
10 | 7, 9 | reexpcld 13232 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑𝑘) ∈ ℝ) |
11 | 5 | simprd 483 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 < 𝑝) |
12 | 6 | nncnd 11242 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℂ) |
13 | 12 | exp1d 13210 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑1) = 𝑝) |
14 | 6 | nnge1d 11269 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑝) |
15 | simpr 471 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
16 | nnuz 11930 | . . . . . . . . . 10 ⊢ ℕ = (ℤ≥‘1) | |
17 | 15, 16 | syl6eleq 2860 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
18 | 7, 14, 17 | leexp2ad 13248 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑1) ≤ (𝑝↑𝑘)) |
19 | 13, 18 | eqbrtrrd 4811 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ≤ (𝑝↑𝑘)) |
20 | 1, 7, 10, 11, 19 | ltletrd 10403 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 < (𝑝↑𝑘)) |
21 | 1, 20 | ltned 10379 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ≠ (𝑝↑𝑘)) |
22 | 21 | neneqd 2948 | . . . 4 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → ¬ 1 = (𝑝↑𝑘)) |
23 | 22 | nrexdv 3149 | . . 3 ⊢ (𝑝 ∈ ℙ → ¬ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘)) |
24 | 23 | nrex 3148 | . 2 ⊢ ¬ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘) |
25 | 1nn 11237 | . . . 4 ⊢ 1 ∈ ℕ | |
26 | isppw2 25062 | . . . 4 ⊢ (1 ∈ ℕ → ((Λ‘1) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘))) | |
27 | 25, 26 | ax-mp 5 | . . 3 ⊢ ((Λ‘1) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘)) |
28 | 27 | necon1bbii 2992 | . 2 ⊢ (¬ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘) ↔ (Λ‘1) = 0) |
29 | 24, 28 | mpbi 220 | 1 ⊢ (Λ‘1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∃wrex 3062 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 0cc0 10142 1c1 10143 < clt 10280 ≤ cle 10281 ℕcn 11226 2c2 11276 ℕ0cn0 11499 ℤ≥cuz 11893 ↑cexp 13067 ℙcprime 15592 Λcvma 25039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-dvds 15190 df-gcd 15425 df-prm 15593 df-pc 15749 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 df-vma 25045 |
This theorem is referenced by: chp1 25114 |
Copyright terms: Public domain | W3C validator |