![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > viin | Structured version Visualization version GIF version |
Description: Indexed intersection with a universal index class. When 𝐴 doesn't depend on 𝑥, this evaluates to 𝐴 by 19.3 2217 and abid2 2884. When 𝐴 = 𝑥, this evaluates to ∅ by intiin 4727 and intv 4991. (Contributed by NM, 11-Sep-2008.) |
Ref | Expression |
---|---|
viin | ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4676 | . 2 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} | |
2 | ralv 3360 | . . 3 ⊢ (∀𝑥 ∈ V 𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑦 ∈ 𝐴) | |
3 | 2 | abbii 2878 | . 2 ⊢ {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
4 | 1, 3 | eqtri 2783 | 1 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1630 = wceq 1632 ∈ wcel 2140 {cab 2747 ∀wral 3051 Vcvv 3341 ∩ ciin 4674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-ral 3056 df-v 3343 df-iin 4676 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |