Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem2 Structured version   Visualization version   GIF version

Theorem vdwnnlem2 15902
 Description: Lemma for vdwnn 15904. The set of all "bad" 𝑘 for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
Assertion
Ref Expression
vdwnnlem2 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝐴   𝑎,𝑐,𝑑,𝑚   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐵,𝑎,𝑑,𝑘,𝑚   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem2
StepHypRef Expression
1 eluzel2 11884 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 peano2zm 11612 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → (𝐴 − 1) ∈ ℤ)
4 id 22 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ𝐴))
51zcnd 11675 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
6 ax-1cn 10186 . . . . . . . . . . . . 13 1 ∈ ℂ
7 npcan 10482 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
85, 6, 7sylancl 697 . . . . . . . . . . . 12 (𝐵 ∈ (ℤ𝐴) → ((𝐴 − 1) + 1) = 𝐴)
98fveq2d 6356 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → (ℤ‘((𝐴 − 1) + 1)) = (ℤ𝐴))
104, 9eleqtrrd 2842 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1)))
11 eluzp1m1 11903 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℤ ∧ 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1))) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
123, 10, 11syl2anc 696 . . . . . . . . 9 (𝐵 ∈ (ℤ𝐴) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
1312ad2antlr 765 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
14 fzss2 12574 . . . . . . . 8 ((𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)) → (0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)))
15 ssralv 3807 . . . . . . . 8 ((0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1613, 14, 153syl 18 . . . . . . 7 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1716reximdv 3154 . . . . . 6 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1817reximdv 3154 . . . . 5 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1918con3d 148 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
20 id 22 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
21 simpr 479 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ𝐴))
22 eluznn 11951 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ ℕ)
2320, 21, 22syl2anr 496 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℕ)
2419, 23jctild 567 . . 3 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
2524expimpd 630 . 2 ((𝜑𝐵 ∈ (ℤ𝐴)) → ((𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
26 oveq1 6820 . . . . . . 7 (𝑘 = 𝐴 → (𝑘 − 1) = (𝐴 − 1))
2726oveq2d 6829 . . . . . 6 (𝑘 = 𝐴 → (0...(𝑘 − 1)) = (0...(𝐴 − 1)))
2827raleqdv 3283 . . . . 5 (𝑘 = 𝐴 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
29282rexbidv 3195 . . . 4 (𝑘 = 𝐴 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3029notbid 307 . . 3 (𝑘 = 𝐴 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
31 vdwnn.3 . . 3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
3230, 31elrab2 3507 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
33 oveq1 6820 . . . . . . 7 (𝑘 = 𝐵 → (𝑘 − 1) = (𝐵 − 1))
3433oveq2d 6829 . . . . . 6 (𝑘 = 𝐵 → (0...(𝑘 − 1)) = (0...(𝐵 − 1)))
3534raleqdv 3283 . . . . 5 (𝑘 = 𝐵 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
36352rexbidv 3195 . . . 4 (𝑘 = 𝐵 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3736notbid 307 . . 3 (𝑘 = 𝐵 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3837, 31elrab2 3507 . 2 (𝐵𝑆 ↔ (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3925, 32, 383imtr4g 285 1 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  {crab 3054   ⊆ wss 3715  {csn 4321  ◡ccnv 5265   “ cima 5269  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  Fincfn 8121  ℂcc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   − cmin 10458  ℕcn 11212  ℤcz 11569  ℤ≥cuz 11879  ...cfz 12519 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520 This theorem is referenced by:  vdwnnlem3  15903
 Copyright terms: Public domain W3C validator