Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem7 Structured version   Visualization version   GIF version

Theorem vdwlem7 15738
 Description: Lemma for vdw 15745. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
Assertion
Ref Expression
vdwlem7 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝐷,𝑦   𝑥,𝑊,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem vdwlem7
Dummy variables 𝑘 𝑎 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6718 . . 3 (1...𝑊) ∈ V
2 2nn0 11347 . . . 4 2 ∈ ℕ0
3 vdwlem7.k . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
4 eluznn0 11795 . . . 4 ((2 ∈ ℕ0𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ0)
52, 3, 4sylancr 696 . . 3 (𝜑𝐾 ∈ ℕ0)
6 vdwlem7.g . . 3 (𝜑𝐺:(1...𝑊)⟶𝑅)
7 vdwlem7.m . . 3 (𝜑𝑀 ∈ ℕ)
8 eqid 2651 . . 3 (1...𝑀) = (1...𝑀)
91, 5, 6, 7, 8vdwpc 15731 . 2 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...𝑀))(∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
10 vdwlem3.v . . . . . 6 (𝜑𝑉 ∈ ℕ)
1110ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑉 ∈ ℕ)
12 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
1312ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑊 ∈ ℕ)
14 vdwlem4.r . . . . . 6 (𝜑𝑅 ∈ Fin)
1514ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑅 ∈ Fin)
16 vdwlem4.h . . . . . 6 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
1716ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
18 vdwlem4.f . . . . 5 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
197ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑀 ∈ ℕ)
206ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐺:(1...𝑊)⟶𝑅)
213ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐾 ∈ (ℤ‘2))
22 vdwlem7.a . . . . . 6 (𝜑𝐴 ∈ ℕ)
2322ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐴 ∈ ℕ)
24 vdwlem7.d . . . . . 6 (𝜑𝐷 ∈ ℕ)
2524ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝐷 ∈ ℕ)
26 vdwlem7.s . . . . . 6 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
2726ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
28 simplrl 817 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑎 ∈ ℕ)
29 simplrr 818 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))
30 nnex 11064 . . . . . . 7 ℕ ∈ V
31 ovex 6718 . . . . . . 7 (1...𝑀) ∈ V
3230, 31elmap 7928 . . . . . 6 (𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)) ↔ 𝑑:(1...𝑀)⟶ℕ)
3329, 32sylib 208 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → 𝑑:(1...𝑀)⟶ℕ)
34 simprl 809 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → ∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}))
35 fveq2 6229 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
3635oveq2d 6706 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑎 + (𝑑𝑖)) = (𝑎 + (𝑑𝑘)))
3736, 35oveq12d 6708 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)))
3836fveq2d 6233 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝐺‘(𝑎 + (𝑑𝑖))) = (𝐺‘(𝑎 + (𝑑𝑘))))
3938sneqd 4222 . . . . . . . . 9 (𝑖 = 𝑘 → {(𝐺‘(𝑎 + (𝑑𝑖)))} = {(𝐺‘(𝑎 + (𝑑𝑘)))})
4039imaeq2d 5501 . . . . . . . 8 (𝑖 = 𝑘 → (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) = (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4137, 40sseq12d 3667 . . . . . . 7 (𝑖 = 𝑘 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))})))
4241cbvralv 3201 . . . . . 6 (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑘 ∈ (1...𝑀)((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4334, 42sylib 208 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → ∀𝑘 ∈ (1...𝑀)((𝑎 + (𝑑𝑘))(AP‘𝐾)(𝑑𝑘)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑘)))}))
4438cbvmptv 4783 . . . . 5 (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖)))) = (𝑘 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑘))))
45 simprr 811 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)
46 eqid 2651 . . . . 5 (𝑎 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) = (𝑎 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
47 eqid 2651 . . . . 5 (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝑑𝑗)) + (𝑊 · 𝐷))) = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝑑𝑗)) + (𝑊 · 𝐷)))
4811, 13, 15, 17, 18, 19, 20, 21, 23, 25, 27, 28, 33, 43, 44, 45, 46, 47vdwlem6 15737 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) ∧ (∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀)) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
4948ex 449 . . 3 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...𝑀)))) → ((∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
5049rexlimdvva 3067 . 2 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...𝑀))(∀𝑖 ∈ (1...𝑀)((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝑎 + (𝑑𝑖))))) = 𝑀) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
519, 50sylbid 230 1 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐺 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607  ifcif 4119  {csn 4210  ⟨cop 4216   class class class wbr 4685   ↦ cmpt 4762  ◡ccnv 5142  ran crn 5144   “ cima 5146  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  Fincfn 7997  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   − cmin 10304  ℕcn 11058  2c2 11108  ℕ0cn0 11330  ℤ≥cuz 11725  ...cfz 12364  #chash 13157  APcvdwa 15716   MonoAP cvdwm 15717   PolyAP cvdwp 15718 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-hash 13158  df-vdwap 15719  df-vdwmc 15720  df-vdwpc 15721 This theorem is referenced by:  vdwlem9  15740
 Copyright terms: Public domain W3C validator