MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem5 Structured version   Visualization version   GIF version

Theorem vdwlem5 15812
Description: Lemma for vdw 15821. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (♯‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem5 (𝜑𝑇 ∈ ℕ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem5
StepHypRef Expression
1 vdwlem6.t . 2 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
2 vdwlem6.b . . 3 (𝜑𝐵 ∈ ℕ)
3 vdwlem3.w . . . . 5 (𝜑𝑊 ∈ ℕ)
43nnnn0d 11464 . . . 4 (𝜑𝑊 ∈ ℕ0)
5 vdwlem7.a . . . . . 6 (𝜑𝐴 ∈ ℕ)
6 vdwlem3.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℕ)
76nncnd 11149 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
8 vdwlem7.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℕ)
98nncnd 11149 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
107, 9subcld 10505 . . . . . . . 8 (𝜑 → (𝑉𝐷) ∈ ℂ)
115nncnd 11149 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210, 11npcand 10509 . . . . . . 7 (𝜑 → (((𝑉𝐷) − 𝐴) + 𝐴) = (𝑉𝐷))
137, 9, 11subsub4d 10536 . . . . . . . . . 10 (𝜑 → ((𝑉𝐷) − 𝐴) = (𝑉 − (𝐷 + 𝐴)))
149, 11addcomd 10351 . . . . . . . . . . 11 (𝜑 → (𝐷 + 𝐴) = (𝐴 + 𝐷))
1514oveq2d 6781 . . . . . . . . . 10 (𝜑 → (𝑉 − (𝐷 + 𝐴)) = (𝑉 − (𝐴 + 𝐷)))
1613, 15eqtrd 2758 . . . . . . . . 9 (𝜑 → ((𝑉𝐷) − 𝐴) = (𝑉 − (𝐴 + 𝐷)))
17 cnvimass 5595 . . . . . . . . . . . . 13 (𝐹 “ {𝐺}) ⊆ dom 𝐹
18 vdwlem4.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Fin)
19 vdwlem4.h . . . . . . . . . . . . . . 15 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
20 vdwlem4.f . . . . . . . . . . . . . . 15 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
216, 3, 18, 19, 20vdwlem4 15811 . . . . . . . . . . . . . 14 (𝜑𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
22 fdm 6164 . . . . . . . . . . . . . 14 (𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)) → dom 𝐹 = (1...𝑉))
2321, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = (1...𝑉))
2417, 23syl5sseq 3759 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ {𝐺}) ⊆ (1...𝑉))
25 vdwlem7.s . . . . . . . . . . . . 13 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
26 ssun2 3885 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷) ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
27 vdwlem7.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ (ℤ‘2))
28 uz2m1nn 11877 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 − 1) ∈ ℕ)
305, 8nnaddcld 11180 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + 𝐷) ∈ ℕ)
31 vdwapid1 15802 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ ℕ ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3229, 30, 8, 31syl3anc 1439 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3326, 32sseldi 3707 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝐷) ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
34 eluz2nn 11840 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
3527, 34syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ)
3635nncnd 11149 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℂ)
37 ax-1cn 10107 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
38 npcan 10403 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
3936, 37, 38sylancl 697 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
4039fveq2d 6308 . . . . . . . . . . . . . . . 16 (𝜑 → (AP‘((𝐾 − 1) + 1)) = (AP‘𝐾))
4140oveqd 6782 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷))
42 nnm1nn0 11447 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
4335, 42syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 − 1) ∈ ℕ0)
44 vdwapun 15801 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4543, 5, 8, 44syl3anc 1439 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4641, 45eqtr3d 2760 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4733, 46eleqtrrd 2806 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝐷) ∈ (𝐴(AP‘𝐾)𝐷))
4825, 47sseldd 3710 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐷) ∈ (𝐹 “ {𝐺}))
4924, 48sseldd 3710 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐷) ∈ (1...𝑉))
50 elfzuz3 12453 . . . . . . . . . . 11 ((𝐴 + 𝐷) ∈ (1...𝑉) → 𝑉 ∈ (ℤ‘(𝐴 + 𝐷)))
5149, 50syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ (ℤ‘(𝐴 + 𝐷)))
52 uznn0sub 11833 . . . . . . . . . 10 (𝑉 ∈ (ℤ‘(𝐴 + 𝐷)) → (𝑉 − (𝐴 + 𝐷)) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → (𝑉 − (𝐴 + 𝐷)) ∈ ℕ0)
5416, 53eqeltrd 2803 . . . . . . . 8 (𝜑 → ((𝑉𝐷) − 𝐴) ∈ ℕ0)
55 nn0nnaddcl 11437 . . . . . . . 8 ((((𝑉𝐷) − 𝐴) ∈ ℕ0𝐴 ∈ ℕ) → (((𝑉𝐷) − 𝐴) + 𝐴) ∈ ℕ)
5654, 5, 55syl2anc 696 . . . . . . 7 (𝜑 → (((𝑉𝐷) − 𝐴) + 𝐴) ∈ ℕ)
5712, 56eqeltrrd 2804 . . . . . 6 (𝜑 → (𝑉𝐷) ∈ ℕ)
585, 57nnaddcld 11180 . . . . 5 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℕ)
59 nnm1nn0 11447 . . . . 5 ((𝐴 + (𝑉𝐷)) ∈ ℕ → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℕ0)
6058, 59syl 17 . . . 4 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℕ0)
614, 60nn0mulcld 11469 . . 3 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℕ0)
62 nnnn0addcl 11436 . . 3 ((𝐵 ∈ ℕ ∧ (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℕ0) → (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) ∈ ℕ)
632, 61, 62syl2anc 696 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) ∈ ℕ)
641, 63syl5eqel 2807 1 (𝜑𝑇 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1596  wcel 2103  wral 3014  cun 3678  wss 3680  ifcif 4194  {csn 4285  cmpt 4837  ccnv 5217  dom cdm 5218  ran crn 5219  cima 5221  wf 5997  cfv 6001  (class class class)co 6765  𝑚 cmap 7974  Fincfn 8072  cc 10047  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054  cmin 10379  cn 11133  2c2 11183  0cn0 11405  cuz 11800  ...cfz 12440  chash 13232  APcvdwa 15792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-vdwap 15795
This theorem is referenced by:  vdwlem6  15813
  Copyright terms: Public domain W3C validator