MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem1 Structured version   Visualization version   GIF version

Theorem vdwlem1 15732
Description: Lemma for vdw 15745. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem1.r (𝜑𝑅 ∈ Fin)
vdwlem1.k (𝜑𝐾 ∈ ℕ)
vdwlem1.w (𝜑𝑊 ∈ ℕ)
vdwlem1.f (𝜑𝐹:(1...𝑊)⟶𝑅)
vdwlem1.a (𝜑𝐴 ∈ ℕ)
vdwlem1.m (𝜑𝑀 ∈ ℕ)
vdwlem1.d (𝜑𝐷:(1...𝑀)⟶ℕ)
vdwlem1.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
vdwlem1.i (𝜑𝐼 ∈ (1...𝑀))
vdwlem1.e (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
Assertion
Ref Expression
vdwlem1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
Distinct variable groups:   𝐴,𝑖   𝐷,𝑖   𝑖,𝐼   𝑖,𝐾   𝑖,𝐹   𝑖,𝑀   𝜑,𝑖   𝑅,𝑖   𝑖,𝑊

Proof of Theorem vdwlem1
Dummy variables 𝑎 𝑐 𝑑 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem1.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 vdwlem1.d . . . . 5 (𝜑𝐷:(1...𝑀)⟶ℕ)
3 vdwlem1.i . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
42, 3ffvelrnd 6400 . . . 4 (𝜑 → (𝐷𝐼) ∈ ℕ)
5 vdwlem1.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
65nnnn0d 11389 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
7 vdwapun 15725 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ) → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
86, 1, 4, 7syl3anc 1366 . . . . 5 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) = ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))))
91nnred 11073 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
10 vdwlem1.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
11 nnuz 11761 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
1210, 11syl6eleq 2740 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘1))
13 eluzfz1 12386 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ (1...𝑀))
152, 14ffvelrnd 6400 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℕ)
161, 15nnaddcld 11105 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℕ)
1716nnred 11073 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ∈ ℝ)
18 vdwlem1.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ℕ)
1918nnred 11073 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
2015nnrpd 11908 . . . . . . . . . . . 12 (𝜑 → (𝐷‘1) ∈ ℝ+)
219, 20ltaddrpd 11943 . . . . . . . . . . 11 (𝜑𝐴 < (𝐴 + (𝐷‘1)))
229, 17, 21ltled 10223 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + (𝐷‘1)))
23 vdwlem1.s . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
2423r19.21bi 2961 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}))
25 cnvimass 5520 . . . . . . . . . . . . . . . . 17 (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ dom 𝐹
26 vdwlem1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:(1...𝑊)⟶𝑅)
27 fdm 6089 . . . . . . . . . . . . . . . . . 18 (𝐹:(1...𝑊)⟶𝑅 → dom 𝐹 = (1...𝑊))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = (1...𝑊))
2925, 28syl5sseq 3686 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3029adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ⊆ (1...𝑊))
3124, 30sstrd 3646 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (1...𝑊))
32 nnm1nn0 11372 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
335, 32syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐾 − 1) ∈ ℕ0)
34 nn0uz 11760 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
3533, 34syl6eleq 2740 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 − 1) ∈ (ℤ‘0))
36 eluzfz1 12386 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝐾 − 1)))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0...(𝐾 − 1)))
3837adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ∈ (0...(𝐾 − 1)))
392ffvelrnda 6399 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℕ)
4039nncnd 11074 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐷𝑖) ∈ ℂ)
4140mul02d 10272 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (0 · (𝐷𝑖)) = 0)
4241oveq2d 6706 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + 0))
431adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐴 ∈ ℕ)
4443, 39nnaddcld 11105 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℕ)
4544nncnd 11074 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ℂ)
4645addid1d 10274 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) + 0) = (𝐴 + (𝐷𝑖)))
4742, 46eqtr2d 2686 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
48 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 0 → (𝑚 · (𝐷𝑖)) = (0 · (𝐷𝑖)))
4948oveq2d 6706 . . . . . . . . . . . . . . . . . 18 (𝑚 = 0 → ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖))))
5049eqeq2d 2661 . . . . . . . . . . . . . . . . 17 (𝑚 = 0 → ((𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))) ↔ (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖)))))
5150rspcev 3340 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (0 · (𝐷𝑖)))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
5238, 47, 51syl2anc 694 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖))))
535adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
5453nnnn0d 11389 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
55 vdwapval 15724 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℕ0 ∧ (𝐴 + (𝐷𝑖)) ∈ ℕ ∧ (𝐷𝑖) ∈ ℕ) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5654, 44, 39, 55syl3anc 1366 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝐷𝑖)) = ((𝐴 + (𝐷𝑖)) + (𝑚 · (𝐷𝑖)))))
5752, 56mpbird 247 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)))
5831, 57sseldd 3637 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
5958ralrimiva 2995 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝐴 + (𝐷𝑖)) ∈ (1...𝑊))
60 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑖 = 1 → (𝐷𝑖) = (𝐷‘1))
6160oveq2d 6706 . . . . . . . . . . . . . 14 (𝑖 = 1 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷‘1)))
6261eleq1d 2715 . . . . . . . . . . . . 13 (𝑖 = 1 → ((𝐴 + (𝐷𝑖)) ∈ (1...𝑊) ↔ (𝐴 + (𝐷‘1)) ∈ (1...𝑊)))
6362rspcv 3336 . . . . . . . . . . . 12 (1 ∈ (1...𝑀) → (∀𝑖 ∈ (1...𝑀)(𝐴 + (𝐷𝑖)) ∈ (1...𝑊) → (𝐴 + (𝐷‘1)) ∈ (1...𝑊)))
6414, 59, 63sylc 65 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐷‘1)) ∈ (1...𝑊))
65 elfzle2 12383 . . . . . . . . . . 11 ((𝐴 + (𝐷‘1)) ∈ (1...𝑊) → (𝐴 + (𝐷‘1)) ≤ 𝑊)
6664, 65syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (𝐷‘1)) ≤ 𝑊)
679, 17, 19, 22, 66letrd 10232 . . . . . . . . 9 (𝜑𝐴𝑊)
681, 11syl6eleq 2740 . . . . . . . . . 10 (𝜑𝐴 ∈ (ℤ‘1))
6918nnzd 11519 . . . . . . . . . 10 (𝜑𝑊 ∈ ℤ)
70 elfz5 12372 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘1) ∧ 𝑊 ∈ ℤ) → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
7168, 69, 70syl2anc 694 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (1...𝑊) ↔ 𝐴𝑊))
7267, 71mpbird 247 . . . . . . . 8 (𝜑𝐴 ∈ (1...𝑊))
73 eqidd 2652 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (𝐹𝐴))
74 ffn 6083 . . . . . . . . 9 (𝐹:(1...𝑊)⟶𝑅𝐹 Fn (1...𝑊))
75 fniniseg 6378 . . . . . . . . 9 (𝐹 Fn (1...𝑊) → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7626, 74, 753syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴 ∈ (1...𝑊) ∧ (𝐹𝐴) = (𝐹𝐴))))
7772, 73, 76mpbir2and 977 . . . . . . 7 (𝜑𝐴 ∈ (𝐹 “ {(𝐹𝐴)}))
7877snssd 4372 . . . . . 6 (𝜑 → {𝐴} ⊆ (𝐹 “ {(𝐹𝐴)}))
79 fveq2 6229 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝐷𝑖) = (𝐷𝐼))
8079oveq2d 6706 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝐴 + (𝐷𝑖)) = (𝐴 + (𝐷𝐼)))
8180, 79oveq12d 6708 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) = ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)))
8280fveq2d 6233 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝐹‘(𝐴 + (𝐷𝑖))) = (𝐹‘(𝐴 + (𝐷𝐼))))
8382sneqd 4222 . . . . . . . . . . 11 (𝑖 = 𝐼 → {(𝐹‘(𝐴 + (𝐷𝑖)))} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
8483imaeq2d 5501 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
8581, 84sseq12d 3667 . . . . . . . . 9 (𝑖 = 𝐼 → (((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) ↔ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))})))
8685rspcv 3336 . . . . . . . 8 (𝐼 ∈ (1...𝑀) → (∀𝑖 ∈ (1...𝑀)((𝐴 + (𝐷𝑖))(AP‘𝐾)(𝐷𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝑖)))}) → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))})))
873, 23, 86sylc 65 . . . . . . 7 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
88 vdwlem1.e . . . . . . . . 9 (𝜑 → (𝐹𝐴) = (𝐹‘(𝐴 + (𝐷𝐼))))
8988sneqd 4222 . . . . . . . 8 (𝜑 → {(𝐹𝐴)} = {(𝐹‘(𝐴 + (𝐷𝐼)))})
9089imaeq2d 5501 . . . . . . 7 (𝜑 → (𝐹 “ {(𝐹𝐴)}) = (𝐹 “ {(𝐹‘(𝐴 + (𝐷𝐼)))}))
9187, 90sseqtr4d 3675 . . . . . 6 (𝜑 → ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
9278, 91unssd 3822 . . . . 5 (𝜑 → ({𝐴} ∪ ((𝐴 + (𝐷𝐼))(AP‘𝐾)(𝐷𝐼))) ⊆ (𝐹 “ {(𝐹𝐴)}))
938, 92eqsstrd 3672 . . . 4 (𝜑 → (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)}))
94 oveq1 6697 . . . . . 6 (𝑎 = 𝐴 → (𝑎(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))𝑑))
9594sseq1d 3665 . . . . 5 (𝑎 = 𝐴 → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
96 oveq2 6698 . . . . . 6 (𝑑 = (𝐷𝐼) → (𝐴(AP‘(𝐾 + 1))𝑑) = (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)))
9796sseq1d 3665 . . . . 5 (𝑑 = (𝐷𝐼) → ((𝐴(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) ↔ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})))
9895, 97rspc2ev 3355 . . . 4 ((𝐴 ∈ ℕ ∧ (𝐷𝐼) ∈ ℕ ∧ (𝐴(AP‘(𝐾 + 1))(𝐷𝐼)) ⊆ (𝐹 “ {(𝐹𝐴)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
991, 4, 93, 98syl3anc 1366 . . 3 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}))
100 fvex 6239 . . . 4 (𝐹𝐴) ∈ V
101 sneq 4220 . . . . . . 7 (𝑐 = (𝐹𝐴) → {𝑐} = {(𝐹𝐴)})
102101imaeq2d 5501 . . . . . 6 (𝑐 = (𝐹𝐴) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝐴)}))
103102sseq2d 3666 . . . . 5 (𝑐 = (𝐹𝐴) → ((𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
1041032rexbidv 3086 . . . 4 (𝑐 = (𝐹𝐴) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)})))
105100, 104spcev 3331 . . 3 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {(𝐹𝐴)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
10699, 105syl 17 . 2 (𝜑 → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐}))
107 ovex 6718 . . 3 (1...𝑊) ∈ V
108 peano2nn0 11371 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
1096, 108syl 17 . . 3 (𝜑 → (𝐾 + 1) ∈ ℕ0)
110107, 109, 26vdwmc 15729 . 2 (𝜑 → ((𝐾 + 1) MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘(𝐾 + 1))𝑑) ⊆ (𝐹 “ {𝑐})))
111106, 110mpbird 247 1 (𝜑 → (𝐾 + 1) MonoAP 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  cun 3605  wss 3607  {csn 4210   class class class wbr 4685  ccnv 5142  dom cdm 5143  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cle 10113  cmin 10304  cn 11058  0cn0 11330  cz 11415  cuz 11725  ...cfz 12364  APcvdwa 15716   MonoAP cvdwm 15717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-vdwap 15719  df-vdwmc 15720
This theorem is referenced by:  vdwlem6  15737
  Copyright terms: Public domain W3C validator