MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwap0 Structured version   Visualization version   GIF version

Theorem vdwap0 15727
Description: Value of a length-1 arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwap0 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘0)𝐷) = ∅)

Proof of Theorem vdwap0
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3952 . . . . . 6 ¬ 𝑚 ∈ ∅
21pm2.21i 116 . . . . 5 (𝑚 ∈ ∅ → ¬ 𝑥 = (𝐴 + (𝑚 · 𝐷)))
3 0re 10078 . . . . . . 7 0 ∈ ℝ
4 ltm1 10901 . . . . . . 7 (0 ∈ ℝ → (0 − 1) < 0)
53, 4ax-mp 5 . . . . . 6 (0 − 1) < 0
6 0z 11426 . . . . . . 7 0 ∈ ℤ
7 peano2zm 11458 . . . . . . . 8 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
86, 7ax-mp 5 . . . . . . 7 (0 − 1) ∈ ℤ
9 fzn 12395 . . . . . . 7 ((0 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅))
106, 8, 9mp2an 708 . . . . . 6 ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅)
115, 10mpbi 220 . . . . 5 (0...(0 − 1)) = ∅
122, 11eleq2s 2748 . . . 4 (𝑚 ∈ (0...(0 − 1)) → ¬ 𝑥 = (𝐴 + (𝑚 · 𝐷)))
1312nrex 3029 . . 3 ¬ ∃𝑚 ∈ (0...(0 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))
14 0nn0 11345 . . . 4 0 ∈ ℕ0
15 vdwapval 15724 . . . 4 ((0 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘0)𝐷) ↔ ∃𝑚 ∈ (0...(0 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))))
1614, 15mp3an1 1451 . . 3 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ (𝐴(AP‘0)𝐷) ↔ ∃𝑚 ∈ (0...(0 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))))
1713, 16mtbiri 316 . 2 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ¬ 𝑥 ∈ (𝐴(AP‘0)𝐷))
1817eq0rdv 4012 1 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘0)𝐷) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wrex 2942  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cmin 10304  cn 11058  0cn0 11330  cz 11415  ...cfz 12364  APcvdwa 15716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-vdwap 15719
This theorem is referenced by:  vdwap1  15728  vdwmc2  15730  vdwlem13  15744
  Copyright terms: Public domain W3C validator