MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdgn1frgrv2 Structured version   Visualization version   GIF version

Theorem vdgn1frgrv2 27276
Description: Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
vdn1frgrv2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vdgn1frgrv2 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (#‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1))

Proof of Theorem vdgn1frgrv2
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrusgr 27240 . . . . . 6 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
21anim1i 591 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
32adantr 480 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
4 vdn1frgrv2.v . . . . 5 𝑉 = (Vtx‘𝐺)
5 eqid 2651 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2651 . . . . 5 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
7 eqid 2651 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
84, 5, 6, 7vtxdusgrval 26439 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ((VtxDeg‘𝐺)‘𝑁) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
93, 8syl 17 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → ((VtxDeg‘𝐺)‘𝑁) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
10 eqid 2651 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
114, 103cyclfrgrrn2 27267 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
1211adantlr 751 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
13 preq1 4300 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑁 → {𝑎, 𝑏} = {𝑁, 𝑏})
1413eleq1d 2715 . . . . . . . . . . . . . . 15 (𝑎 = 𝑁 → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑏} ∈ (Edg‘𝐺)))
15 preq2 4301 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑁 → {𝑐, 𝑎} = {𝑐, 𝑁})
1615eleq1d 2715 . . . . . . . . . . . . . . 15 (𝑎 = 𝑁 → ({𝑐, 𝑎} ∈ (Edg‘𝐺) ↔ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
1714, 163anbi13d 1441 . . . . . . . . . . . . . 14 (𝑎 = 𝑁 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)) ↔ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))))
1817anbi2d 740 . . . . . . . . . . . . 13 (𝑎 = 𝑁 → ((𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))))
19182rexbidv 3086 . . . . . . . . . . . 12 (𝑎 = 𝑁 → (∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ ∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))))
2019rspcva 3338 . . . . . . . . . . 11 ((𝑁𝑉 ∧ ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))) → ∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))))
211adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ USGraph)
22 simplll 813 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑏𝑐)
23 3simpb 1079 . . . . . . . . . . . . . . . . . 18 (({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)) → ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
2423ad3antlr 767 . . . . . . . . . . . . . . . . 17 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺)))
255, 10usgr2edg1 26149 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USGraph ∧ 𝑏𝑐) ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
2621, 22, 24, 25syl21anc 1365 . . . . . . . . . . . . . . . 16 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
2726a1d 25 . . . . . . . . . . . . . . 15 ((((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) ∧ 𝐺 ∈ FriendGraph ) → (1 < (#‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2827ex 449 . . . . . . . . . . . . . 14 (((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) ∧ 𝑁𝑉) → (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))
2928ex 449 . . . . . . . . . . . . 13 ((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3029a1i 11 . . . . . . . . . . . 12 ((𝑏𝑉𝑐𝑉) → ((𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))))
3130rexlimivv 3065 . . . . . . . . . . 11 (∃𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑁, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑁} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3220, 31syl 17 . . . . . . . . . 10 ((𝑁𝑉 ∧ ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3332ex 449 . . . . . . . . 9 (𝑁𝑉 → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → (𝑁𝑉 → (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))))))
3433pm2.43a 54 . . . . . . . 8 (𝑁𝑉 → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3534com24 95 . . . . . . 7 (𝑁𝑉 → (1 < (#‘𝑉) → (𝐺 ∈ FriendGraph → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3635com3r 87 . . . . . 6 (𝐺 ∈ FriendGraph → (𝑁𝑉 → (1 < (#‘𝑉) → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))))
3736imp31 447 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → (∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
3812, 37mpd 15 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
39 fvex 6239 . . . . . . . . 9 (iEdg‘𝐺) ∈ V
4039dmex 7141 . . . . . . . 8 dom (iEdg‘𝐺) ∈ V
4140a1i 11 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → dom (iEdg‘𝐺) ∈ V)
42 rabexg 4844 . . . . . . 7 (dom (iEdg‘𝐺) ∈ V → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V)
43 hash1snb 13245 . . . . . . 7 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V → ((#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖}))
4441, 42, 433syl 18 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → ((#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖}))
45 reusn 4294 . . . . . 6 (∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ∃𝑖{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑖})
4644, 45syl6bbr 278 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → ((#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1 ↔ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
4746necon3abid 2859 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → ((#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 1 ↔ ¬ ∃!𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
4838, 47mpbird 247 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 1)
499, 48eqnetrd 2890 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) ∧ 1 < (#‘𝑉)) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1)
5049ex 449 1 ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (#‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  ∃!wreu 2943  {crab 2945  Vcvv 3231  {csn 4210  {cpr 4212   class class class wbr 4685  dom cdm 5143  cfv 5926  1c1 9975   < clt 10112  #chash 13157  Vtxcvtx 25919  iEdgciedg 25920  Edgcedg 25984  USGraphcusgr 26089  VtxDegcvtxdg 26417   FriendGraph cfrgr 27236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-xadd 11985  df-fz 12365  df-hash 13158  df-edg 25985  df-uhgr 25998  df-upgr 26022  df-umgr 26023  df-usgr 26091  df-vtxdg 26418  df-frgr 27237
This theorem is referenced by:  vdgn1frgrv3  27277  vdgfrgrgt2  27278
  Copyright terms: Public domain W3C validator