Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vciOLD Structured version   Visualization version   GIF version

Theorem vciOLD 27646
 Description: Obsolete version of cvsi 23051 as of 21-Sep-2021. The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable 𝑊 was chosen because V is already used for the universal class. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vciOLD.1 𝐺 = (1st𝑊)
vciOLD.2 𝑆 = (2nd𝑊)
vciOLD.3 𝑋 = ran 𝐺
Assertion
Ref Expression
vciOLD (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem vciOLD
Dummy variables 𝑔 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vciOLD.1 . . . . 5 𝐺 = (1st𝑊)
21eqeq2i 2736 . . . 4 (𝑔 = 𝐺𝑔 = (1st𝑊))
3 eleq1 2791 . . . . 5 (𝑔 = 𝐺 → (𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp))
4 rneq 5458 . . . . . . 7 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
5 vciOLD.3 . . . . . . 7 𝑋 = ran 𝐺
64, 5syl6eqr 2776 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
7 xpeq2 5238 . . . . . . . 8 (ran 𝑔 = 𝑋 → (ℂ × ran 𝑔) = (ℂ × 𝑋))
87feq2d 6144 . . . . . . 7 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶ran 𝑔))
9 feq3 6141 . . . . . . 7 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × 𝑋)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
108, 9bitrd 268 . . . . . 6 (ran 𝑔 = 𝑋 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
116, 10syl 17 . . . . 5 (𝑔 = 𝐺 → (𝑠:(ℂ × ran 𝑔)⟶ran 𝑔𝑠:(ℂ × 𝑋)⟶𝑋))
12 oveq 6771 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (𝑥𝑔𝑧) = (𝑥𝐺𝑧))
1312oveq2d 6781 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑦𝑠(𝑥𝑔𝑧)) = (𝑦𝑠(𝑥𝐺𝑧)))
14 oveq 6771 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)))
1513, 14eqeq12d 2739 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))))
166, 15raleqbidv 3255 . . . . . . . . 9 (𝑔 = 𝐺 → (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ↔ ∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧))))
17 oveq 6771 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)))
1817eqeq2d 2734 . . . . . . . . . . 11 (𝑔 = 𝐺 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥))))
1918anbi1d 743 . . . . . . . . . 10 (𝑔 = 𝐺 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))
2019ralbidv 3088 . . . . . . . . 9 (𝑔 = 𝐺 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))
2116, 20anbi12d 749 . . . . . . . 8 (𝑔 = 𝐺 → ((∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))
2221ralbidv 3088 . . . . . . 7 (𝑔 = 𝐺 → (∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))
2322anbi2d 742 . . . . . 6 (𝑔 = 𝐺 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))
246, 23raleqbidv 3255 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))))
253, 11, 243anbi123d 1512 . . . 4 (𝑔 = 𝐺 → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))))
262, 25sylbir 225 . . 3 (𝑔 = (1st𝑊) → ((𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))))
27 vciOLD.2 . . . . 5 𝑆 = (2nd𝑊)
2827eqeq2i 2736 . . . 4 (𝑠 = 𝑆𝑠 = (2nd𝑊))
29 feq1 6139 . . . . 5 (𝑠 = 𝑆 → (𝑠:(ℂ × 𝑋)⟶𝑋𝑆:(ℂ × 𝑋)⟶𝑋))
30 oveq 6771 . . . . . . . 8 (𝑠 = 𝑆 → (1𝑠𝑥) = (1𝑆𝑥))
3130eqeq1d 2726 . . . . . . 7 (𝑠 = 𝑆 → ((1𝑠𝑥) = 𝑥 ↔ (1𝑆𝑥) = 𝑥))
32 oveq 6771 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑦𝑠(𝑥𝐺𝑧)) = (𝑦𝑆(𝑥𝐺𝑧)))
33 oveq 6771 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠𝑥) = (𝑦𝑆𝑥))
34 oveq 6771 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠𝑧) = (𝑦𝑆𝑧))
3533, 34oveq12d 6783 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
3632, 35eqeq12d 2739 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))))
3736ralbidv 3088 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ↔ ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))))
38 oveq 6771 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦 + 𝑧)𝑠𝑥) = ((𝑦 + 𝑧)𝑆𝑥))
39 oveq 6771 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑧𝑠𝑥) = (𝑧𝑆𝑥))
4033, 39oveq12d 6783 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
4138, 40eqeq12d 2739 . . . . . . . . . . 11 (𝑠 = 𝑆 → (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ↔ ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))))
42 oveq 6771 . . . . . . . . . . . 12 (𝑠 = 𝑆 → ((𝑦 · 𝑧)𝑠𝑥) = ((𝑦 · 𝑧)𝑆𝑥))
4339oveq2d 6781 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑠(𝑧𝑆𝑥)))
44 oveq 6771 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑆𝑥)) = (𝑦𝑆(𝑧𝑆𝑥)))
4543, 44eqtrd 2758 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (𝑦𝑠(𝑧𝑠𝑥)) = (𝑦𝑆(𝑧𝑆𝑥)))
4642, 45eqeq12d 2739 . . . . . . . . . . 11 (𝑠 = 𝑆 → (((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)) ↔ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
4741, 46anbi12d 749 . . . . . . . . . 10 (𝑠 = 𝑆 → ((((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
4847ralbidv 3088 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))) ↔ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
4937, 48anbi12d 749 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
5049ralbidv 3088 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))) ↔ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
5131, 50anbi12d 749 . . . . . 6 (𝑠 = 𝑆 → (((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5251ralbidv 3088 . . . . 5 (𝑠 = 𝑆 → (∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))) ↔ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
5329, 523anbi23d 1515 . . . 4 (𝑠 = 𝑆 → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
5428, 53sylbir 225 . . 3 (𝑠 = (2nd𝑊) → ((𝐺 ∈ AbelOp ∧ 𝑠:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑠(𝑥𝐺𝑧)) = ((𝑦𝑠𝑥)𝐺(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝐺(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥)))))) ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))))
5526, 54elopabi 7351 . 2 (𝑊 ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
56 df-vc 27644 . 2 CVecOLD = {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))}
5755, 56eleq2s 2821 1 (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103  ∀wral 3014  {copab 4820   × cxp 5216  ran crn 5219  ⟶wf 5997  ‘cfv 6001  (class class class)co 6765  1st c1st 7283  2nd c2nd 7284  ℂcc 10047  1c1 10050   + caddc 10052   · cmul 10054  AbelOpcablo 27628  CVecOLDcvc 27643 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-fv 6009  df-ov 6768  df-1st 7285  df-2nd 7286  df-vc 27644 This theorem is referenced by:  vcsm  27647  vcidOLD  27649  vcdi  27650  vcdir  27651  vcass  27652  vcablo  27654
 Copyright terms: Public domain W3C validator