MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vacn Structured version   Visualization version   GIF version

Theorem vacn 27879
Description: Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
vacn.c 𝐶 = (IndMet‘𝑈)
vacn.j 𝐽 = (MetOpen‘𝐶)
vacn.g 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
vacn (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem vacn
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 vacn.g . . 3 𝐺 = ( +𝑣𝑈)
31, 2nvgf 27803 . 2 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
4 rphalfcl 12071 . . . . . 6 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
54adantl 473 . . . . 5 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
6 simplll 815 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec)
7 vacn.c . . . . . . . . . . 11 𝐶 = (IndMet‘𝑈)
81, 7imsmet 27876 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
96, 8syl 17 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
10 simplrl 819 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (BaseSet‘𝑈))
1110adantr 472 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ (BaseSet‘𝑈))
12 simprl 811 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈))
13 metcl 22358 . . . . . . . . 9 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) ∈ ℝ)
149, 11, 12, 13syl3anc 1477 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) ∈ ℝ)
15 simplrr 820 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (BaseSet‘𝑈))
1615adantr 472 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈))
17 simprr 813 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑤 ∈ (BaseSet‘𝑈))
18 metcl 22358 . . . . . . . . 9 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) ∈ ℝ)
199, 16, 17, 18syl3anc 1477 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) ∈ ℝ)
20 rpre 12052 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
2120ad2antlr 765 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑟 ∈ ℝ)
22 lt2halves 11479 . . . . . . . 8 (((𝑥𝐶𝑧) ∈ ℝ ∧ (𝑦𝐶𝑤) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟))
2314, 19, 21, 22syl3anc 1477 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟))
24 eqid 2760 . . . . . . . . . . . 12 ( −𝑣𝑈) = ( −𝑣𝑈)
251, 24nvmcl 27831 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
266, 11, 12, 25syl3anc 1477 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
271, 24nvmcl 27831 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈))
286, 16, 17, 27syl3anc 1477 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈))
29 eqid 2760 . . . . . . . . . . 11 (normCV𝑈) = (normCV𝑈)
301, 2, 29nvtri 27855 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈) ∧ (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈)) → ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))) ≤ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
316, 26, 28, 30syl3anc 1477 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))) ≤ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
321, 2nvgcl 27805 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈))
336, 11, 16, 32syl3anc 1477 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈))
341, 2nvgcl 27805 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈))
356, 12, 17, 34syl3anc 1477 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈))
361, 24, 29, 7imsdval 27871 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))))
376, 33, 35, 36syl3anc 1477 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))))
381, 2, 24nvaddsub4 27842 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤)))
396, 11, 16, 12, 17, 38syl122anc 1486 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤)))
4039fveq2d 6357 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))) = ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))))
4137, 40eqtrd 2794 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))))
421, 24, 29, 7imsdval 27871 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)))
436, 11, 12, 42syl3anc 1477 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)))
441, 24, 29, 7imsdval 27871 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) = ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤)))
456, 16, 17, 44syl3anc 1477 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) = ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤)))
4643, 45oveq12d 6832 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) = (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
4731, 41, 463brtr4d 4836 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)))
48 metcl 22358 . . . . . . . . . 10 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ)
499, 33, 35, 48syl3anc 1477 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ)
5014, 19readdcld 10281 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ)
51 lelttr 10340 . . . . . . . . 9 ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5249, 50, 21, 51syl3anc 1477 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5347, 52mpand 713 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟 → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5423, 53syld 47 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5554ralrimivva 3109 . . . . 5 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
56 breq2 4808 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑥𝐶𝑧) < 𝑠 ↔ (𝑥𝐶𝑧) < (𝑟 / 2)))
57 breq2 4808 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < (𝑟 / 2)))
5856, 57anbi12d 749 . . . . . . . 8 (𝑠 = (𝑟 / 2) → (((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2))))
5958imbi1d 330 . . . . . . 7 (𝑠 = (𝑟 / 2) → ((((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))
60592ralbidv 3127 . . . . . 6 (𝑠 = (𝑟 / 2) → (∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))
6160rspcev 3449 . . . . 5 (((𝑟 / 2) ∈ ℝ+ ∧ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
625, 55, 61syl2anc 696 . . . 4 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
6362ralrimiva 3104 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
6463ralrimivva 3109 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
651, 7imsxmet 27877 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
66 vacn.j . . . 4 𝐽 = (MetOpen‘𝐶)
6766, 66, 66txmetcn 22574 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))) → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))))
6865, 65, 65, 67syl3anc 1477 . 2 (𝑈 ∈ NrmCVec → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))))
693, 64, 68mpbir2and 995 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051   class class class wbr 4804   × cxp 5264  wf 6045  cfv 6049  (class class class)co 6814  cr 10147   + caddc 10151   < clt 10286  cle 10287   / cdiv 10896  2c2 11282  +crp 12045  ∞Metcxmt 19953  Metcme 19954  MetOpencmopn 19958   Cn ccn 21250   ×t ctx 21585  NrmCVeccnv 27769   +𝑣 cpv 27770  BaseSetcba 27771  𝑣 cnsb 27774  normCVcnmcv 27775  IndMetcims 27776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cn 21253  df-cnp 21254  df-tx 21587  df-hmeo 21780  df-xms 22346  df-tms 22348  df-grpo 27677  df-gid 27678  df-ginv 27679  df-gdiv 27680  df-ablo 27729  df-vc 27744  df-nv 27777  df-va 27780  df-ba 27781  df-sm 27782  df-0v 27783  df-vs 27784  df-nmcv 27785  df-ims 27786
This theorem is referenced by:  vmcn  27884  dipcn  27905  hlimadd  28380
  Copyright terms: Public domain W3C validator