![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzval | Structured version Visualization version GIF version |
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzval | ⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4790 | . . 3 ⊢ (𝑗 = 𝑁 → (𝑗 ≤ 𝑘 ↔ 𝑁 ≤ 𝑘)) | |
2 | 1 | rabbidv 3339 | . 2 ⊢ (𝑗 = 𝑁 → {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
3 | df-uz 11894 | . 2 ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | |
4 | zex 11593 | . . 3 ⊢ ℤ ∈ V | |
5 | 4 | rabex 4947 | . 2 ⊢ {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ∈ V |
6 | 2, 3, 5 | fvmpt 6426 | 1 ⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 {crab 3065 class class class wbr 4787 ‘cfv 6030 ≤ cle 10281 ℤcz 11584 ℤ≥cuz 11893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 ax-cnex 10198 ax-resscn 10199 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-neg 10475 df-z 11585 df-uz 11894 |
This theorem is referenced by: eluz1 11897 nn0uz 11929 nnuz 11930 algfx 15501 |
Copyright terms: Public domain | W3C validator |