Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzub Structured version   Visualization version   GIF version

Theorem uzub 39971
 Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
uzub.1 𝑗𝜑
uzub.2 (𝜑𝑀 ∈ ℤ)
uzub.3 𝑍 = (ℤ𝑀)
uzub.12 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
uzub (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑘)

Proof of Theorem uzub
Dummy variables 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . . . . . 8 (𝑘 = 𝑖 → (ℤ𝑘) = (ℤ𝑖))
21raleqdv 3174 . . . . . . 7 (𝑘 = 𝑖 → (∀𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑥))
32cbvrexv 3202 . . . . . 6 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥)
43a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥))
5 breq2 4689 . . . . . . 7 (𝑥 = 𝑤 → (𝐵𝑥𝐵𝑤))
65ralbidv 3015 . . . . . 6 (𝑥 = 𝑤 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑤))
76rexbidv 3081 . . . . 5 (𝑥 = 𝑤 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
84, 7bitrd 268 . . . 4 (𝑥 = 𝑤 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
98cbvrexv 3202 . . 3 (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
109a1i 11 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
11 breq2 4689 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
1211ralbidv 3015 . . . . . . . 8 (𝑤 = 𝑦 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1312rexbidv 3081 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦))
1413cbvrexv 3202 . . . . . 6 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
1514biimpi 206 . . . . 5 (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦)
16 uzub.1 . . . . . . . . . . . . . . 15 𝑗𝜑
17 nfv 1883 . . . . . . . . . . . . . . 15 𝑗 𝑦 ∈ ℝ
1816, 17nfan 1868 . . . . . . . . . . . . . 14 𝑗(𝜑𝑦 ∈ ℝ)
19 nfv 1883 . . . . . . . . . . . . . 14 𝑗 𝑖𝑍
2018, 19nfan 1868 . . . . . . . . . . . . 13 𝑗((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍)
21 nfra1 2970 . . . . . . . . . . . . 13 𝑗𝑗 ∈ (ℤ𝑖)𝐵𝑦
2220, 21nfan 1868 . . . . . . . . . . . 12 𝑗(((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
23 nfmpt1 4780 . . . . . . . . . . . . . . . 16 𝑗(𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
2423nfrn 5400 . . . . . . . . . . . . . . 15 𝑗ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵)
25 nfcv 2793 . . . . . . . . . . . . . . 15 𝑗
26 nfcv 2793 . . . . . . . . . . . . . . 15 𝑗 <
2724, 25, 26nfsup 8398 . . . . . . . . . . . . . 14 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
28 nfcv 2793 . . . . . . . . . . . . . 14 𝑗
29 nfcv 2793 . . . . . . . . . . . . . 14 𝑗𝑦
3027, 28, 29nfbr 4732 . . . . . . . . . . . . 13 𝑗sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦
3130, 29, 27nfif 4148 . . . . . . . . . . . 12 𝑗if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
32 uzub.2 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
3332ad3antrrr 766 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑀 ∈ ℤ)
34 uzub.3 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
35 simpllr 815 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑦 ∈ ℝ)
36 eqid 2651 . . . . . . . . . . . 12 sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) = sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )
37 eqid 2651 . . . . . . . . . . . 12 if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < )) = if(sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑗 ∈ (𝑀...𝑖) ↦ 𝐵), ℝ, < ))
38 simplr 807 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → 𝑖𝑍)
39 uzub.12 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
4039ad5ant15 1336 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) ∧ 𝑗𝑍) → 𝐵 ∈ ℝ)
41 simpr 476 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦)
4222, 31, 33, 34, 35, 36, 37, 38, 40, 41uzublem 39970 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) ∧ ∀𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4342ex 449 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑖𝑍) → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4443rexlimdva 3060 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4544imp 444 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4645ex 449 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4746rexlimdva 3060 . . . . . 6 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
4847imp 444 . . . . 5 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
4915, 48sylan2 490 . . . 4 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤) → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤)
5049ex 449 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 → ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
5132, 34uzidd2 39956 . . . . . . 7 (𝜑𝑀𝑍)
5251ad2antrr 762 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → 𝑀𝑍)
5334raleqi 3172 . . . . . . . 8 (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5453biimpi 206 . . . . . . 7 (∀𝑗𝑍 𝐵𝑤 → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
5554adantl 481 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤)
56 nfv 1883 . . . . . . 7 𝑖𝑗 ∈ (ℤ𝑀)𝐵𝑤
57 fveq2 6229 . . . . . . . 8 (𝑖 = 𝑀 → (ℤ𝑖) = (ℤ𝑀))
5857raleqdv 3174 . . . . . . 7 (𝑖 = 𝑀 → (∀𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤))
5956, 58rspce 3335 . . . . . 6 ((𝑀𝑍 ∧ ∀𝑗 ∈ (ℤ𝑀)𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
6052, 55, 59syl2anc 694 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑗𝑍 𝐵𝑤) → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤)
6160ex 449 . . . 4 ((𝜑𝑤 ∈ ℝ) → (∀𝑗𝑍 𝐵𝑤 → ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6261reximdva 3046 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 → ∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤))
6350, 62impbid 202 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)𝐵𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤))
64 breq2 4689 . . . . 5 (𝑤 = 𝑥 → (𝐵𝑤𝐵𝑥))
6564ralbidv 3015 . . . 4 (𝑤 = 𝑥 → (∀𝑗𝑍 𝐵𝑤 ↔ ∀𝑗𝑍 𝐵𝑥))
6665cbvrexv 3202 . . 3 (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
6766a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗𝑍 𝐵𝑤 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
6810, 63, 673bitrd 294 1 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ran crn 5144  ‘cfv 5926  (class class class)co 6690  supcsup 8387  ℝcr 9973   < clt 10112   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505 This theorem is referenced by:  limsupreuz  40287
 Copyright terms: Public domain W3C validator