![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
Ref | Expression |
---|---|
uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
2 | 1 | eleq2i 2722 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
3 | uztrn 11742 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
4 | 3 | ancoms 468 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
5 | 2, 4 | sylanb 488 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
6 | 5, 1 | syl6eleqr 2741 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 ℤ≥cuz 11725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-neg 10307 df-z 11416 df-uz 11726 |
This theorem is referenced by: eluznn0 11795 eluznn 11796 elfzuz2 12384 rexuz3 14132 r19.29uz 14134 r19.2uz 14135 clim2 14279 clim2c 14280 clim0c 14282 rlimclim1 14320 2clim 14347 climabs0 14360 climcn1 14366 climcn2 14367 climsqz 14415 climsqz2 14416 clim2ser 14429 clim2ser2 14430 climub 14436 climsup 14444 caurcvg2 14452 serf0 14455 iseraltlem1 14456 iseralt 14459 cvgcmp 14592 cvgcmpce 14594 isumsup2 14622 mertenslem1 14660 clim2div 14665 ntrivcvgfvn0 14675 ntrivcvgmullem 14677 fprodeq0 14749 lmbrf 21112 lmss 21150 lmres 21152 txlm 21499 uzrest 21748 lmmcvg 23105 lmmbrf 23106 iscau4 23123 iscauf 23124 caucfil 23127 iscmet3lem3 23134 iscmet3lem1 23135 lmle 23145 lmclim 23147 mbflimsup 23478 ulm2 24184 ulmcaulem 24193 ulmcau 24194 ulmss 24196 ulmdvlem1 24199 ulmdvlem3 24201 mtest 24203 itgulm 24207 logfaclbnd 24992 bposlem6 25059 caures 33686 caushft 33687 dvgrat 38828 cvgdvgrat 38829 climinf 40156 clim2f 40186 clim2cf 40200 clim0cf 40204 clim2f2 40220 fnlimfvre 40224 allbutfifvre 40225 limsupvaluz2 40288 limsupreuzmpt 40289 supcnvlimsup 40290 climuzlem 40293 climisp 40296 climrescn 40298 climxrrelem 40299 climxrre 40300 limsupgtlem 40327 liminfreuzlem 40352 liminfltlem 40354 liminflimsupclim 40357 xlimmnfvlem2 40377 xlimmnfv 40378 xlimpnfvlem2 40381 xlimpnfv 40382 xlimmnfmpt 40387 xlimpnfmpt 40388 climxlim2lem 40389 meaiuninc3v 41019 smflimlem1 41300 smflimlem2 41301 smflimlem3 41302 smflimmpt 41337 smflimsuplem4 41350 smflimsuplem7 41353 smflimsupmpt 41356 smfliminfmpt 41359 |
Copyright terms: Public domain | W3C validator |