MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uztric Structured version   Visualization version   GIF version

Theorem uztric 11747
Description: Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.)
Assertion
Ref Expression
uztric ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))

Proof of Theorem uztric
StepHypRef Expression
1 zre 11419 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 11419 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 letric 10175 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁𝑁𝑀))
41, 2, 3syl2an 493 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
5 eluz 11739 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6 eluz 11739 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (ℤ𝑁) ↔ 𝑁𝑀))
76ancoms 468 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (ℤ𝑁) ↔ 𝑁𝑀))
85, 7orbi12d 746 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)) ↔ (𝑀𝑁𝑁𝑀)))
94, 8mpbird 247 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  wcel 2030   class class class wbr 4685  cfv 5926  cr 9973  cle 10113  cz 11415  cuz 11725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-neg 10307  df-z 11416  df-uz 11726
This theorem is referenced by:  uzin  11758  caubnd  14142  isercoll  14442  sumrb  14488  prodrb  14706  smupvallem  15252  prmreclem5  15671  efgredlemb  18205  1stckgenlem  21404  caucfil  23127  bcmax  25048
  Copyright terms: Public domain W3C validator