MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzsubsubfz Structured version   Visualization version   GIF version

Theorem uzsubsubfz 12569
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 11893 . . 3 (𝐿 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿))
2 eluz2 11893 . . . 4 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
3 simpr 471 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
4 simpr 471 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
54adantr 466 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ)
6 zsubcl 11620 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
76adantlr 686 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
85, 7zsubcld 11688 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑁 − (𝐿𝑀)) ∈ ℤ)
93, 5, 83jca 1121 . . . . . . . . . . . 12 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
109ex 397 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
11103adant3 1125 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1211com12 32 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1312adantr 466 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ)))
1413imp 393 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ))
15 zre 11582 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1615adantl 467 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
1716adantr 466 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝑁 ∈ ℝ)
18 zre 11582 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1918adantr 466 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐿 ∈ ℝ)
2019adantr 466 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → 𝐿 ∈ ℝ)
2117, 20subge0d 10818 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑀𝐿)) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
2221exbiri 808 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → (𝐿𝑁 → 0 ≤ (𝑁𝐿))))
2322com23 86 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿))))
24233impia 1108 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 0 ≤ (𝑁𝐿)))
2524impcom 394 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝑁𝐿))
26 zre 11582 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2726adantr 466 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℝ)
2827adantr 466 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℝ)
29 resubcl 10546 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑁𝐿) ∈ ℝ)
3015, 18, 29syl2anr 576 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℝ)
31303adant3 1125 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℝ)
3231adantl 467 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁𝐿) ∈ ℝ)
3328, 32addge02d 10817 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝑁𝐿) ↔ 𝑀 ≤ ((𝑁𝐿) + 𝑀)))
3425, 33mpbid 222 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ ((𝑁𝐿) + 𝑀))
35 zcn 11583 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
36353ad2ant2 1127 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℂ)
3736adantl 467 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℂ)
38 zcn 11583 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
39383ad2ant1 1126 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℂ)
4039adantl 467 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝐿 ∈ ℂ)
41 zcn 11583 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4241adantr 466 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → 𝑀 ∈ ℂ)
4342adantr 466 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ∈ ℂ)
4437, 40, 43subsubd 10621 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) = ((𝑁𝐿) + 𝑀))
4534, 44breqtrrd 4812 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑀 ≤ (𝑁 − (𝐿𝑀)))
46183ad2ant1 1126 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝐿 ∈ ℝ)
47 subge0 10742 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4846, 26, 47syl2anr 576 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4948exbiri 808 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐿 → 0 ≤ (𝐿𝑀))))
5049com23 86 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀𝐿 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 0 ≤ (𝐿𝑀))))
5150imp31 404 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 0 ≤ (𝐿𝑀))
52153ad2ant2 1127 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → 𝑁 ∈ ℝ)
5352adantl 467 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → 𝑁 ∈ ℝ)
54 resubcl 10546 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿𝑀) ∈ ℝ)
5546, 27, 54syl2anr 576 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝐿𝑀) ∈ ℝ)
5653, 55subge02d 10820 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (0 ≤ (𝐿𝑀) ↔ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
5751, 56mpbid 222 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ≤ 𝑁)
5845, 57jca 495 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁))
59 elfz2 12539 . . . . . . 7 ((𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − (𝐿𝑀)) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 − (𝐿𝑀)) ∧ (𝑁 − (𝐿𝑀)) ≤ 𝑁)))
6014, 58, 59sylanbrc 564 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀𝐿) ∧ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
6160ex 397 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
62613adant2 1124 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
632, 62syl5bi 232 . . 3 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
641, 63sylbi 207 . 2 (𝐿 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁)))
6564imp 393 1 ((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070  wcel 2144   class class class wbr 4784  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137   + caddc 10140  cle 10276  cmin 10467  cz 11578  cuz 11887  ...cfz 12532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533
This theorem is referenced by:  uzsubsubfz1  12570
  Copyright terms: Public domain W3C validator