Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzssre Structured version   Visualization version   GIF version

Theorem uzssre 40087
Description: An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
uzssre (ℤ𝑀) ⊆ ℝ

Proof of Theorem uzssre
StepHypRef Expression
1 uzssz 11870 . 2 (ℤ𝑀) ⊆ ℤ
2 zssre 11547 . 2 ℤ ⊆ ℝ
31, 2sstri 3741 1 (ℤ𝑀) ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wss 3703  cfv 6037  cr 10098  cz 11540  cuz 11850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-cnex 10155  ax-resscn 10156
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-fv 6045  df-ov 6804  df-neg 10432  df-z 11541  df-uz 11851
This theorem is referenced by:  uzublem  40124  uzsscn  40173  limsupvaluz  40412  limsupubuzlem  40416  limsupubuz  40417  limsupmnfuzlem  40430  limsupre3uzlem  40439
  Copyright terms: Public domain W3C validator