MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzss Structured version   Visualization version   GIF version

Theorem uzss 11746
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
uzss (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))

Proof of Theorem uzss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eluzle 11738 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
21adantr 480 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀𝑁)
3 eluzel2 11730 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4 eluzelz 11735 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4jca 553 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 zletr 11459 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
763expa 1284 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
85, 7sylan 487 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑁𝑁𝑘) → 𝑀𝑘))
92, 8mpand 711 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ ℤ) → (𝑁𝑘𝑀𝑘))
109imdistanda 729 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
11 eluz1 11729 . . . 4 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
124, 11syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑁𝑘)))
13 eluz1 11729 . . . 4 (𝑀 ∈ ℤ → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
143, 13syl 17 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘)))
1510, 12, 143imtr4d 283 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ (ℤ𝑀)))
1615ssrdv 3642 1 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2030  wss 3607   class class class wbr 4685  cfv 5926  cle 10113  cz 11415  cuz 11725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-neg 10307  df-z 11416  df-uz 11726
This theorem is referenced by:  uzin  11758  uznnssnn  11773  fzopth  12416  4fvwrd4  12498  fzouzsplit  12542  seqfeq2  12864  rexuzre  14136  cau3lem  14138  climsup  14444  isumsplit  14616  isumrpcl  14619  cvgrat  14659  clim2prod  14664  fprodntriv  14716  isprm3  15443  pcfac  15650  lmflf  21856  caucfil  23127  uniioombllem4  23400  mbflimsup  23478  ulmres  24187  ulmcaulem  24193  logfaclbnd  24992  axlowdimlem17  25883  clwwlkinwwlk  27003  fz2ssnn0  29675  poimirlem1  33540  poimirlem2  33541  poimirlem6  33545  poimirlem7  33546  poimirlem20  33559  uzssd  39947  climinf  40156  climsuse  40158  climresmpt  40209  climleltrp  40226  limsupequzlem  40272  supcnvlimsup  40290  ioodvbdlimc1lem1  40464  ioodvbdlimc1lem2  40465  ioodvbdlimc2lem  40467  meaiininclem  41021  smflimlem2  41301  smflimsuplem2  41348  smflimsuplem3  41349  smflimsuplem4  41350  smflimsuplem5  41351  smflimsuplem6  41352  smflimsuplem7  41353  fzoopth  41662
  Copyright terms: Public domain W3C validator