Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind Structured version   Visualization version   GIF version

Theorem uzind 11661
 Description: Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind.5 (𝑀 ∈ ℤ → 𝜓)
uzind.6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
Assertion
Ref Expression
uzind ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 zre 11573 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21leidd 10786 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
3 uzind.5 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝜓)
42, 3jca 555 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀𝑀𝜓))
54ancli 575 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
6 breq2 4808 . . . . . . . . 9 (𝑗 = 𝑀 → (𝑀𝑗𝑀𝑀))
7 uzind.1 . . . . . . . . 9 (𝑗 = 𝑀 → (𝜑𝜓))
86, 7anbi12d 749 . . . . . . . 8 (𝑗 = 𝑀 → ((𝑀𝑗𝜑) ↔ (𝑀𝑀𝜓)))
98elrab 3504 . . . . . . 7 (𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑀 ∈ ℤ ∧ (𝑀𝑀𝜓)))
105, 9sylibr 224 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
11 peano2z 11610 . . . . . . . . . . 11 (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ)
1211a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 1) ∈ ℤ))
1312adantrd 485 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑘 + 1) ∈ ℤ))
14 zre 11573 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
15 ltp1 11053 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
1615adantl 473 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝑘 < (𝑘 + 1))
17 peano2re 10401 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
1817ancli 575 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℝ → (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ))
19 lelttr 10320 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
20193expb 1114 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ)) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2118, 20sylan2 492 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀𝑘𝑘 < (𝑘 + 1)) → 𝑀 < (𝑘 + 1)))
2216, 21mpan2d 712 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 < (𝑘 + 1)))
23 ltle 10318 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2417, 23sylan2 492 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀 < (𝑘 + 1) → 𝑀 ≤ (𝑘 + 1)))
2522, 24syld 47 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
261, 14, 25syl2an 495 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘𝑀 ≤ (𝑘 + 1)))
2726adantrd 485 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝜒) → 𝑀 ≤ (𝑘 + 1)))
2827expimpd 630 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝑀 ≤ (𝑘 + 1)))
29 uzind.6 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))
30293exp 1113 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → (𝑀𝑘 → (𝜒𝜃))))
3130imp4d 619 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → 𝜃))
3228, 31jcad 556 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
3313, 32jcad 556 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)) → ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃))))
34 breq2 4808 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
35 uzind.2 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝜑𝜒))
3634, 35anbi12d 749 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑀𝑗𝜑) ↔ (𝑀𝑘𝜒)))
3736elrab 3504 . . . . . . . 8 (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑘 ∈ ℤ ∧ (𝑀𝑘𝜒)))
38 breq2 4808 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
39 uzind.3 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
4038, 39anbi12d 749 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → ((𝑀𝑗𝜑) ↔ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4140elrab 3504 . . . . . . . 8 ((𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ ((𝑘 + 1) ∈ ℤ ∧ (𝑀 ≤ (𝑘 + 1) ∧ 𝜃)))
4233, 37, 413imtr4g 285 . . . . . . 7 (𝑀 ∈ ℤ → (𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} → (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4342ralrimiv 3103 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
44 peano5uzti 11659 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ∧ ∀𝑘 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} (𝑘 + 1) ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}) → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
4510, 43, 44mp2and 717 . . . . 5 (𝑀 ∈ ℤ → {𝑤 ∈ ℤ ∣ 𝑀𝑤} ⊆ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)})
4645sseld 3743 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} → 𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)}))
47 breq2 4808 . . . . 5 (𝑤 = 𝑁 → (𝑀𝑤𝑀𝑁))
4847elrab 3504 . . . 4 (𝑁 ∈ {𝑤 ∈ ℤ ∣ 𝑀𝑤} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
49 breq2 4808 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
50 uzind.4 . . . . . 6 (𝑗 = 𝑁 → (𝜑𝜏))
5149, 50anbi12d 749 . . . . 5 (𝑗 = 𝑁 → ((𝑀𝑗𝜑) ↔ (𝑀𝑁𝜏)))
5251elrab 3504 . . . 4 (𝑁 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝜑)} ↔ (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5346, 48, 523imtr3g 284 . . 3 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏))))
54533impib 1109 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ (𝑀𝑁𝜏)))
5554simprrd 814 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054   ⊆ wss 3715   class class class wbr 4804  (class class class)co 6813  ℝcr 10127  1c1 10129   + caddc 10131   < clt 10266   ≤ cle 10267  ℤcz 11569 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570 This theorem is referenced by:  uzind2  11662  uzind3  11663  nn0ind  11664  fzind  11667  fi1uzind  13471  algcvga  15494  zindbi  38013
 Copyright terms: Public domain W3C validator