MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzdisj Structured version   Visualization version   GIF version

Theorem uzdisj 12451
Description: The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzdisj ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅

Proof of Theorem uzdisj
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elin 3829 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∧ 𝑘 ∈ (ℤ𝑁)))
21simprbi 479 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑁))
3 eluzle 11738 . . . . . 6 (𝑘 ∈ (ℤ𝑁) → 𝑁𝑘)
42, 3syl 17 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑁𝑘)
5 eluzel2 11730 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
62, 5syl 17 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑁 ∈ ℤ)
7 eluzelz 11735 . . . . . . 7 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
82, 7syl 17 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ℤ)
9 zlem1lt 11467 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘 ↔ (𝑁 − 1) < 𝑘))
106, 8, 9syl2anc 694 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁𝑘 ↔ (𝑁 − 1) < 𝑘))
114, 10mpbid 222 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) < 𝑘)
121simplbi 475 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
13 elfzle2 12383 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ≤ (𝑁 − 1))
1412, 13syl 17 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ≤ (𝑁 − 1))
158zred 11520 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ℝ)
16 peano2zm 11458 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
176, 16syl 17 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) ∈ ℤ)
1817zred 11520 . . . . . 6 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑁 − 1) ∈ ℝ)
1915, 18lenltd 10221 . . . . 5 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → (𝑘 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 𝑘))
2014, 19mpbid 222 . . . 4 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → ¬ (𝑁 − 1) < 𝑘)
2111, 20pm2.21dd 186 . . 3 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) → 𝑘 ∈ ∅)
2221ssriv 3640 . 2 ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ⊆ ∅
23 ss0 4007 . 2 (((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) ⊆ ∅ → ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅)
2422, 23ax-mp 5 1 ((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1523  wcel 2030  cin 3606  wss 3607  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  1c1 9975   < clt 10112  cle 10113  cmin 10304  cz 11415  cuz 11725  ...cfz 12364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365
This theorem is referenced by:  2prm  15452  uniioombllem4  23400  aacllem  42875
  Copyright terms: Public domain W3C validator