![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxusgrel | Structured version Visualization version GIF version |
Description: A universal vertex, i.e. an element of the set of all universal vertices, of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 31-Oct-2020.) |
Ref | Expression |
---|---|
uvtxnbgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uvtxusgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uvtxusgrel | ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxnbgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uvtxusgr.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | uvtxusgr 26532 | . . 3 ⊢ (𝐺 ∈ USGraph → (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸}) |
4 | 3 | eleq2d 2836 | . 2 ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ 𝑁 ∈ {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸})) |
5 | sneq 4326 | . . . . 5 ⊢ (𝑣 = 𝑁 → {𝑣} = {𝑁}) | |
6 | 5 | difeq2d 3879 | . . . 4 ⊢ (𝑣 = 𝑁 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑁})) |
7 | preq2 4405 | . . . . 5 ⊢ (𝑣 = 𝑁 → {𝑘, 𝑣} = {𝑘, 𝑁}) | |
8 | 7 | eleq1d 2835 | . . . 4 ⊢ (𝑣 = 𝑁 → ({𝑘, 𝑣} ∈ 𝐸 ↔ {𝑘, 𝑁} ∈ 𝐸)) |
9 | 6, 8 | raleqbidv 3301 | . . 3 ⊢ (𝑣 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸)) |
10 | 9 | elrab 3515 | . 2 ⊢ (𝑁 ∈ {𝑣 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣}){𝑘, 𝑣} ∈ 𝐸} ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸)) |
11 | 4, 10 | syl6bb 276 | 1 ⊢ (𝐺 ∈ USGraph → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁}){𝑘, 𝑁} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 ∖ cdif 3720 {csn 4316 {cpr 4318 ‘cfv 6031 Vtxcvtx 26095 Edgcedg 26160 USGraphcusgr 26266 UnivVtxcuvtx 26510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-hash 13322 df-edg 26161 df-upgr 26198 df-umgr 26199 df-usgr 26268 df-nbgr 26448 df-uvtx 26511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |