MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxel1 Structured version   Visualization version   GIF version

Theorem uvtxel1 26523
Description: Characterization of a universal vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtxel1 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺,𝑘   𝑒,𝑉,𝑘   𝑒,𝑁,𝑘
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem uvtxel1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sneq 4324 . . . 4 (𝑛 = 𝑁 → {𝑛} = {𝑁})
21difeq2d 3877 . . 3 (𝑛 = 𝑁 → (𝑉 ∖ {𝑛}) = (𝑉 ∖ {𝑁}))
3 preq2 4403 . . . . 5 (𝑛 = 𝑁 → {𝑘, 𝑛} = {𝑘, 𝑁})
43sseq1d 3779 . . . 4 (𝑛 = 𝑁 → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑘, 𝑁} ⊆ 𝑒))
54rexbidv 3199 . . 3 (𝑛 = 𝑁 → (∃𝑒𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒))
62, 5raleqbidv 3300 . 2 (𝑛 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒))
7 uvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
8 isuvtx.e . . 3 𝐸 = (Edg‘𝐺)
97, 8isuvtx 26521 . 2 (UnivVtx‘𝐺) = {𝑛𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒𝐸 {𝑘, 𝑛} ⊆ 𝑒}
106, 9elrab2 3516 1 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1630  wcel 2144  wral 3060  wrex 3061  cdif 3718  wss 3721  {csn 4314  {cpr 4316  cfv 6031  Vtxcvtx 26094  Edgcedg 26159  UnivVtxcuvtx 26509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-nbgr 26447  df-uvtx 26510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator