![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxavalOLD | Structured version Visualization version GIF version |
Description: Obsolete version of uvtxel 26514 as of 14-Feb-2022. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
uvtxval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
uvtxavalOLD | ⊢ (𝐺 ∈ 𝑊 → (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uvtx 26511 | . . 3 ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})) |
3 | fveq2 6333 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
4 | uvtxval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 3, 4 | syl6eqr 2823 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
6 | 5 | difeq1d 3878 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∖ {𝑣}) = (𝑉 ∖ {𝑣})) |
7 | oveq1 6803 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑣)) | |
8 | 7 | eleq2d 2836 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
9 | 6, 8 | raleqbidv 3301 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
10 | 5, 9 | rabeqbidv 3345 | . . 3 ⊢ (𝑔 = 𝐺 → {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}) |
11 | 10 | adantl 467 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺) → {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}) |
12 | elex 3364 | . 2 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
13 | fvex 6344 | . . . . 5 ⊢ (Vtx‘𝐺) ∈ V | |
14 | 4, 13 | eqeltri 2846 | . . . 4 ⊢ 𝑉 ∈ V |
15 | 14 | rabex 4947 | . . 3 ⊢ {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ∈ V) |
17 | 2, 11, 12, 16 | fvmptd 6432 | 1 ⊢ (𝐺 ∈ 𝑊 → (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 Vcvv 3351 ∖ cdif 3720 {csn 4317 ↦ cmpt 4864 ‘cfv 6030 (class class class)co 6796 Vtxcvtx 26095 NeighbVtx cnbgr 26447 UnivVtxcuvtx 26510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-uvtx 26511 |
This theorem is referenced by: uvtxaelOLD 26515 isuvtxaOLD 26523 uvtxa01vtx0OLD 26527 |
Copyright terms: Public domain | W3C validator |