![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxael1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of uvtxel1 26524 as of 14-Feb-2022. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isuvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uvtxael1OLD | ⊢ (𝐺 ∈ 𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxel.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isuvtx.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | isuvtxaOLD 26523 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (UnivVtx‘𝐺) = {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒}) |
4 | 3 | eleq2d 2836 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒})) |
5 | sneq 4326 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) | |
6 | 5 | difeq2d 3879 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑉 ∖ {𝑛}) = (𝑉 ∖ {𝑁})) |
7 | preq2 4405 | . . . . . 6 ⊢ (𝑛 = 𝑁 → {𝑘, 𝑛} = {𝑘, 𝑁}) | |
8 | 7 | sseq1d 3781 | . . . . 5 ⊢ (𝑛 = 𝑁 → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑘, 𝑁} ⊆ 𝑒)) |
9 | 8 | rexbidv 3200 | . . . 4 ⊢ (𝑛 = 𝑁 → (∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
10 | 6, 9 | raleqbidv 3301 | . . 3 ⊢ (𝑛 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
11 | 10 | elrab 3515 | . 2 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
12 | 4, 11 | syl6bb 276 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 {crab 3065 ∖ cdif 3720 ⊆ wss 3723 {csn 4316 {cpr 4318 ‘cfv 6031 Vtxcvtx 26095 Edgcedg 26160 UnivVtxcuvtx 26510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-nbgr 26448 df-uvtx 26511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |