MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxa01vtx0OLD Structured version   Visualization version   GIF version

Theorem uvtxa01vtx0OLD 26527
Description: Obsolete version of uvtx01vtx 26525 as of 14-Feb-2022. (Contributed by AV, 30-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtxa01vtx0OLD ((𝐺𝑊𝐸 = ∅) → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))

Proof of Theorem uvtxa01vtx0OLD
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . . . 5 𝑉 = (Vtx‘𝐺)
21uvtxavalOLD 26513 . . . 4 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
32adantr 466 . . 3 ((𝐺𝑊𝐸 = ∅) → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
43neeq1d 3002 . 2 ((𝐺𝑊𝐸 = ∅) → ((UnivVtx‘𝐺) ≠ ∅ ↔ {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅))
5 rabn0 4105 . . 3 ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
65a1i 11 . 2 ((𝐺𝑊𝐸 = ∅) → ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
7 falseral0 4221 . . . . . . . . . 10 ((∀𝑛 ¬ 𝑛 ∈ ∅ ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → (𝑉 ∖ {𝑣}) = ∅)
87ex 397 . . . . . . . . 9 (∀𝑛 ¬ 𝑛 ∈ ∅ → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅))
9 noel 4067 . . . . . . . . 9 ¬ 𝑛 ∈ ∅
108, 9mpg 1872 . . . . . . . 8 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅)
11 ssdif0 4090 . . . . . . . . 9 (𝑉 ⊆ {𝑣} ↔ (𝑉 ∖ {𝑣}) = ∅)
12 sssn 4493 . . . . . . . . . 10 (𝑉 ⊆ {𝑣} ↔ (𝑉 = ∅ ∨ 𝑉 = {𝑣}))
13 ne0i 4069 . . . . . . . . . . . 12 (𝑣𝑉𝑉 ≠ ∅)
14 eqneqall 2954 . . . . . . . . . . . 12 (𝑉 = ∅ → (𝑉 ≠ ∅ → 𝑉 = {𝑣}))
1513, 14syl5 34 . . . . . . . . . . 11 (𝑉 = ∅ → (𝑣𝑉𝑉 = {𝑣}))
16 ax-1 6 . . . . . . . . . . 11 (𝑉 = {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1715, 16jaoi 846 . . . . . . . . . 10 ((𝑉 = ∅ ∨ 𝑉 = {𝑣}) → (𝑣𝑉𝑉 = {𝑣}))
1812, 17sylbi 207 . . . . . . . . 9 (𝑉 ⊆ {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1911, 18sylbir 225 . . . . . . . 8 ((𝑉 ∖ {𝑣}) = ∅ → (𝑣𝑉𝑉 = {𝑣}))
2010, 19syl 17 . . . . . . 7 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑣𝑉𝑉 = {𝑣}))
2120impcom 394 . . . . . 6 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → 𝑉 = {𝑣})
22 vsnid 4349 . . . . . . . 8 𝑣 ∈ {𝑣}
23 eleq2 2839 . . . . . . . 8 (𝑉 = {𝑣} → (𝑣𝑉𝑣 ∈ {𝑣}))
2422, 23mpbiri 248 . . . . . . 7 (𝑉 = {𝑣} → 𝑣𝑉)
25 ral0 4218 . . . . . . . 8 𝑛 ∈ ∅ 𝑛 ∈ ∅
26 difeq1 3872 . . . . . . . . . 10 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ({𝑣} ∖ {𝑣}))
27 difid 4096 . . . . . . . . . 10 ({𝑣} ∖ {𝑣}) = ∅
2826, 27syl6eq 2821 . . . . . . . . 9 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ∅)
2928raleqdv 3293 . . . . . . . 8 (𝑉 = {𝑣} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ ∅))
3025, 29mpbiri 248 . . . . . . 7 (𝑉 = {𝑣} → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)
3124, 30jca 501 . . . . . 6 (𝑉 = {𝑣} → (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
3221, 31impbii 199 . . . . 5 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣})
3332a1i 11 . . . 4 ((𝐺𝑊𝐸 = ∅) → ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣}))
3433exbidv 2002 . . 3 ((𝐺𝑊𝐸 = ∅) → (∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ ∃𝑣 𝑉 = {𝑣}))
35 isuvtx.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
3635eqeq1i 2776 . . . . . . . . 9 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
37 nbgr0edg 26476 . . . . . . . . 9 ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3836, 37sylbi 207 . . . . . . . 8 (𝐸 = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3938eleq2d 2836 . . . . . . 7 (𝐸 = ∅ → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ ∅))
4039ralbidv 3135 . . . . . 6 (𝐸 = ∅ → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
4140rexbidv 3200 . . . . 5 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
4241adantl 467 . . . 4 ((𝐺𝑊𝐸 = ∅) → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
43 df-rex 3067 . . . 4 (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
4442, 43syl6bb 276 . . 3 ((𝐺𝑊𝐸 = ∅) → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)))
45 fvex 6344 . . . . 5 (Vtx‘𝐺) ∈ V
461, 45eqeltri 2846 . . . 4 𝑉 ∈ V
47 hash1snb 13409 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4846, 47mp1i 13 . . 3 ((𝐺𝑊𝐸 = ∅) → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4934, 44, 483bitr4d 300 . 2 ((𝐺𝑊𝐸 = ∅) → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (♯‘𝑉) = 1))
504, 6, 493bitrd 294 1 ((𝐺𝑊𝐸 = ∅) → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  wal 1629   = wceq 1631  wex 1852  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  cdif 3720  wss 3723  c0 4063  {csn 4317  cfv 6030  (class class class)co 6796  1c1 10143  chash 13321  Vtxcvtx 26095  Edgcedg 26160   NeighbVtx cnbgr 26447  UnivVtxcuvtx 26510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-hash 13322  df-nbgr 26448  df-uvtx 26511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator