MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcff Structured version   Visualization version   GIF version

Theorem uvcff 20178
Description: Domain and range of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcff ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)

Proof of Theorem uvcff
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2651 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
31, 2ringidcl 18614 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
4 eqid 2651 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
51, 4ring0cl 18615 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
63, 5ifcld 4164 . . . . . . 7 (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
76ad3antrrr 766 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
8 eqid 2651 . . . . . 6 (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) = (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
97, 8fmptd 6425 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅))
10 fvex 6239 . . . . . . 7 (Base‘𝑅) ∈ V
11 elmapg 7912 . . . . . . 7 (((Base‘𝑅) ∈ V ∧ 𝐼𝑊) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1210, 11mpan 706 . . . . . 6 (𝐼𝑊 → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1312ad2antlr 763 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
149, 13mpbird 247 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼))
15 mptexg 6525 . . . . . 6 (𝐼𝑊 → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V)
1615ad2antlr 763 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V)
17 funmpt 5964 . . . . . 6 Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
1817a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
19 fvex 6239 . . . . . 6 (0g𝑅) ∈ V
2019a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (0g𝑅) ∈ V)
21 snfi 8079 . . . . . 6 {𝑖} ∈ Fin
2221a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → {𝑖} ∈ Fin)
23 eldifsni 4353 . . . . . . . . 9 (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗𝑖)
2423adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗𝑖)
2524neneqd 2828 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖)
2625iffalsed 4130 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) = (0g𝑅))
27 simplr 807 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝐼𝑊)
2826, 27suppss2 7374 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑖})
29 suppssfifsupp 8331 . . . . 5 ((((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑖})) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3016, 18, 20, 22, 28, 29syl32anc 1374 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
31 uvcff.y . . . . . 6 𝑌 = (𝑅 freeLMod 𝐼)
32 uvcff.b . . . . . 6 𝐵 = (Base‘𝑌)
3331, 1, 4, 32frlmelbas 20148 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵 ↔ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∧ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))))
3433adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵 ↔ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∧ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))))
3514, 30, 34mpbir2and 977 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵)
36 eqid 2651 . . 3 (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))) = (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
3735, 36fmptd 6425 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))):𝐼𝐵)
38 uvcff.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
3938, 2, 4uvcfval 20171 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈 = (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))))
4039feq1d 6068 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑈:𝐼𝐵 ↔ (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))):𝐼𝐵))
4137, 40mpbird 247 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cdif 3604  wss 3607  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690   supp csupp 7340  𝑚 cmap 7899  Fincfn 7997   finSupp cfsupp 8316  Basecbs 15904  0gc0g 16147  1rcur 18547  Ringcrg 18593   freeLMod cfrlm 20138   unitVec cuvc 20169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-mgp 18536  df-ur 18548  df-ring 18595  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-uvc 20170
This theorem is referenced by:  uvcf1  20179  uvcresum  20180  frlmssuvc1  20181  frlmssuvc2  20182  frlmsslsp  20183  frlmlbs  20184  frlmup2  20186  frlmup3  20187  frlmup4  20188  lindsdom  33533  matunitlindflem2  33536  aacllem  42875
  Copyright terms: Public domain W3C validator