![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > utopsnneip | Structured version Visualization version GIF version |
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
Ref | Expression |
---|---|
utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
Ref | Expression |
---|---|
utopsnneip | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utoptop.1 | . 2 ⊢ 𝐽 = (unifTop‘𝑈) | |
2 | fveq2 6352 | . . . . . 6 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) | |
3 | 2 | eleq2d 2825 | . . . . 5 ⊢ (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
4 | 3 | cbvralv 3310 | . . . 4 ⊢ (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) |
5 | eleq1w 2822 | . . . . 5 ⊢ (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) | |
6 | 5 | raleqbi1dv 3285 | . . . 4 ⊢ (𝑏 = 𝑎 → (∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
7 | 4, 6 | syl5bb 272 | . . 3 ⊢ (𝑏 = 𝑎 → (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
8 | 7 | cbvrabv 3339 | . 2 ⊢ {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)} |
9 | simpl 474 | . . . . . . 7 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → 𝑞 = 𝑝) | |
10 | 9 | sneqd 4333 | . . . . . 6 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → {𝑞} = {𝑝}) |
11 | 10 | imaeq2d 5624 | . . . . 5 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝})) |
12 | 11 | mpteq2dva 4896 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
13 | 12 | rneqd 5508 | . . 3 ⊢ (𝑞 = 𝑝 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
14 | 13 | cbvmptv 4902 | . 2 ⊢ (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
15 | 1, 8, 14 | utopsnneiplem 22252 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 {crab 3054 𝒫 cpw 4302 {csn 4321 ↦ cmpt 4881 ran crn 5267 “ cima 5269 ‘cfv 6049 neicnei 21103 UnifOncust 22204 unifTopcutop 22235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-fin 8125 df-fi 8482 df-top 20901 df-nei 21104 df-ust 22205 df-utop 22236 |
This theorem is referenced by: utopsnnei 22254 utopreg 22257 neipcfilu 22301 |
Copyright terms: Public domain | W3C validator |