MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopreg Structured version   Visualization version   GIF version

Theorem utopreg 22276
Description: All Hausdorff uniform spaces are regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Hypothesis
Ref Expression
utopreg.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopreg ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)

Proof of Theorem utopreg
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utopreg.1 . . 3 𝐽 = (unifTop‘𝑈)
2 utoptop 22258 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
32adantr 466 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → (unifTop‘𝑈) ∈ Top)
41, 3syl5eqel 2854 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Top)
5 simp-4l 768 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎))
64ad2antrr 705 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝐽 ∈ Top)
75, 6syl 17 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝐽 ∈ Top)
8 simplr 752 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑤𝑈)
9 simp-4l 768 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
10 simpr 471 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑤𝑈)
114ad3antrrr 709 . . . . . . . . . . . . 13 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝐽 ∈ Top)
12 simpllr 760 . . . . . . . . . . . . 13 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑎𝐽)
13 eqid 2771 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1413eltopss 20932 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑎𝐽) → 𝑎 𝐽)
1511, 12, 14syl2anc 573 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑎 𝐽)
16 utopbas 22259 . . . . . . . . . . . . . 14 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
171unieqi 4583 . . . . . . . . . . . . . 14 𝐽 = (unifTop‘𝑈)
1816, 17syl6eqr 2823 . . . . . . . . . . . . 13 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = 𝐽)
199, 18syl 17 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑋 = 𝐽)
2015, 19sseqtr4d 3791 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑎𝑋)
21 simplr 752 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑥𝑎)
2220, 21sseldd 3753 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → 𝑥𝑋)
231utopsnnei 22273 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑥𝑋) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥}))
249, 10, 22, 23syl3anc 1476 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑤𝑈) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥}))
255, 8, 24syl2anc 573 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥}))
26 neii2 21133 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑤 “ {𝑥}) ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑏𝐽 ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥})))
277, 25, 26syl2anc 573 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ∃𝑏𝐽 ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥})))
28 simprl 754 . . . . . . . . . . 11 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → {𝑥} ⊆ 𝑏)
29 vex 3354 . . . . . . . . . . . 12 𝑥 ∈ V
3029snss 4451 . . . . . . . . . . 11 (𝑥𝑏 ↔ {𝑥} ⊆ 𝑏)
3128, 30sylibr 224 . . . . . . . . . 10 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑥𝑏)
327ad2antrr 705 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝐽 ∈ Top)
33 simplll 758 . . . . . . . . . . . . . . . . 17 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑈 ∈ (UnifOn‘𝑋))
345, 33syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑈 ∈ (UnifOn‘𝑋))
3534ad2antrr 705 . . . . . . . . . . . . . . 15 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑈 ∈ (UnifOn‘𝑋))
368ad2antrr 705 . . . . . . . . . . . . . . 15 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑤𝑈)
37 simplr 752 . . . . . . . . . . . . . . . . . . 19 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎𝐽)
386, 37, 14syl2anc 573 . . . . . . . . . . . . . . . . . 18 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎 𝐽)
3933, 18syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑋 = 𝐽)
4038, 39sseqtr4d 3791 . . . . . . . . . . . . . . . . 17 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎𝑋)
41 simpr 471 . . . . . . . . . . . . . . . . 17 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑥𝑎)
4240, 41sseldd 3753 . . . . . . . . . . . . . . . 16 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑥𝑋)
4342ad6antr 720 . . . . . . . . . . . . . . 15 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑥𝑋)
44 ustimasn 22252 . . . . . . . . . . . . . . 15 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑥𝑋) → (𝑤 “ {𝑥}) ⊆ 𝑋)
4535, 36, 43, 44syl3anc 1476 . . . . . . . . . . . . . 14 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑤 “ {𝑥}) ⊆ 𝑋)
4635, 18syl 17 . . . . . . . . . . . . . 14 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑋 = 𝐽)
4745, 46sseqtrd 3790 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑤 “ {𝑥}) ⊆ 𝐽)
48 simprr 756 . . . . . . . . . . . . 13 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑏 ⊆ (𝑤 “ {𝑥}))
4913clsss 21079 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑤 “ {𝑥}) ⊆ 𝐽𝑏 ⊆ (𝑤 “ {𝑥})) → ((cls‘𝐽)‘𝑏) ⊆ ((cls‘𝐽)‘(𝑤 “ {𝑥})))
5032, 47, 48, 49syl3anc 1476 . . . . . . . . . . . 12 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ ((cls‘𝐽)‘(𝑤 “ {𝑥})))
51 ustssxp 22228 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑋 × 𝑋))
5234, 8, 51syl2anc 573 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑤 ⊆ (𝑋 × 𝑋))
5334, 18syl 17 . . . . . . . . . . . . . . . . 17 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑋 = 𝐽)
5453sqxpeqd 5281 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (𝑋 × 𝑋) = ( 𝐽 × 𝐽))
5552, 54sseqtrd 3790 . . . . . . . . . . . . . . 15 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑤 ⊆ ( 𝐽 × 𝐽))
565, 38syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑎 𝐽)
57 simp-5r 774 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑥𝑎)
5856, 57sseldd 3753 . . . . . . . . . . . . . . 15 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑥 𝐽)
5913, 13imasncls 21716 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ (𝑤 ⊆ ( 𝐽 × 𝐽) ∧ 𝑥 𝐽)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}))
607, 7, 55, 58, 59syl22anc 1477 . . . . . . . . . . . . . 14 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}))
61 simprl 754 . . . . . . . . . . . . . . . . 17 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → 𝑤 = 𝑤)
621utop3cls 22275 . . . . . . . . . . . . . . . . 17 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ⊆ (𝑋 × 𝑋)) ∧ (𝑤𝑈𝑤 = 𝑤)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ (𝑤 ∘ (𝑤𝑤)))
6334, 52, 8, 61, 62syl22anc 1477 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ (𝑤 ∘ (𝑤𝑤)))
64 simprr 756 . . . . . . . . . . . . . . . 16 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)
6563, 64sstrd 3762 . . . . . . . . . . . . . . 15 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ 𝑣)
66 imass1 5641 . . . . . . . . . . . . . . 15 (((cls‘(𝐽 ×t 𝐽))‘𝑤) ⊆ 𝑣 → (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}) ⊆ (𝑣 “ {𝑥}))
6765, 66syl 17 . . . . . . . . . . . . . 14 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (((cls‘(𝐽 ×t 𝐽))‘𝑤) “ {𝑥}) ⊆ (𝑣 “ {𝑥}))
6860, 67sstrd 3762 . . . . . . . . . . . . 13 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (𝑣 “ {𝑥}))
6968ad2antrr 705 . . . . . . . . . . . 12 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘(𝑤 “ {𝑥})) ⊆ (𝑣 “ {𝑥}))
7050, 69sstrd 3762 . . . . . . . . . . 11 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ (𝑣 “ {𝑥}))
71 simp-5r 774 . . . . . . . . . . 11 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → 𝑎 = (𝑣 “ {𝑥}))
7270, 71sseqtr4d 3791 . . . . . . . . . 10 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → ((cls‘𝐽)‘𝑏) ⊆ 𝑎)
7331, 72jca 501 . . . . . . . . 9 ((((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) ∧ ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥}))) → (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
7473ex 397 . . . . . . . 8 (((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) ∧ 𝑏𝐽) → (({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥})) → (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)))
7574reximdva 3165 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → (∃𝑏𝐽 ({𝑥} ⊆ 𝑏𝑏 ⊆ (𝑤 “ {𝑥})) → ∃𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)))
7627, 75mpd 15 . . . . . 6 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣)) → ∃𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
77 simp-5l 772 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → 𝑈 ∈ (UnifOn‘𝑋))
78 simplr 752 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → 𝑣𝑈)
79 ustex3sym 22241 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣))
8077, 78, 79syl2anc 573 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑣))
8176, 80r19.29a 3226 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑥})) → ∃𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
82 opnneip 21144 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑎𝐽𝑥𝑎) → 𝑎 ∈ ((nei‘𝐽)‘{𝑥}))
836, 37, 41, 82syl3anc 1476 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎 ∈ ((nei‘𝐽)‘{𝑥}))
841utopsnneip 22272 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})))
8533, 42, 84syl2anc 573 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → ((nei‘𝐽)‘{𝑥}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})))
8683, 85eleqtrd 2852 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → 𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})))
87 eqid 2771 . . . . . . . 8 (𝑣𝑈 ↦ (𝑣 “ {𝑥})) = (𝑣𝑈 ↦ (𝑣 “ {𝑥}))
8887elrnmpt 5510 . . . . . . 7 (𝑎𝐽 → (𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑥})))
8937, 88syl 17 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → (𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑥})) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑥})))
9086, 89mpbid 222 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑥}))
9181, 90r19.29a 3226 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) ∧ 𝑥𝑎) → ∃𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
9291ralrimiva 3115 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) ∧ 𝑎𝐽) → ∀𝑥𝑎𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
9392ralrimiva 3115 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → ∀𝑎𝐽𝑥𝑎𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎))
94 isreg 21357 . 2 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑎𝐽𝑥𝑎𝑏𝐽 (𝑥𝑏 ∧ ((cls‘𝐽)‘𝑏) ⊆ 𝑎)))
954, 93, 94sylanbrc 572 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  wss 3723  {csn 4316   cuni 4574  cmpt 4863   × cxp 5247  ccnv 5248  ran crn 5250  cima 5252  ccom 5253  cfv 6031  (class class class)co 6793  Topctop 20918  clsccl 21043  neicnei 21122  Hauscha 21333  Regcreg 21334   ×t ctx 21584  UnifOncust 22223  unifTopcutop 22254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-fin 8113  df-fi 8473  df-topgen 16312  df-top 20919  df-topon 20936  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-cn 21252  df-cnp 21253  df-reg 21341  df-tx 21586  df-ust 22224  df-utop 22255
This theorem is referenced by:  uspreg  22298
  Copyright terms: Public domain W3C validator