![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustssco | Structured version Visualization version GIF version |
Description: In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
Ref | Expression |
---|---|
ustssco | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3809 | . . . 4 ⊢ 𝑉 ⊆ (𝑉 ∪ (𝑉 ∘ 𝑉)) | |
2 | coires1 5691 | . . . . . 6 ⊢ (𝑉 ∘ ( I ↾ 𝑋)) = (𝑉 ↾ 𝑋) | |
3 | ustrel 22062 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) | |
4 | ustssxp 22055 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
5 | dmss 5355 | . . . . . . . . 9 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) |
7 | dmxpid 5377 | . . . . . . . 8 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
8 | 6, 7 | syl6sseq 3684 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ 𝑋) |
9 | relssres 5472 | . . . . . . 7 ⊢ ((Rel 𝑉 ∧ dom 𝑉 ⊆ 𝑋) → (𝑉 ↾ 𝑋) = 𝑉) | |
10 | 3, 8, 9 | syl2anc 694 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ↾ 𝑋) = 𝑉) |
11 | 2, 10 | syl5eq 2697 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ ( I ↾ 𝑋)) = 𝑉) |
12 | 11 | uneq1d 3799 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) = (𝑉 ∪ (𝑉 ∘ 𝑉))) |
13 | 1, 12 | syl5sseqr 3687 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉))) |
14 | coundi 5674 | . . 3 ⊢ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) | |
15 | 13, 14 | syl6sseqr 3685 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉))) |
16 | ustdiag 22059 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
17 | ssequn1 3816 | . . . 4 ⊢ (( I ↾ 𝑋) ⊆ 𝑉 ↔ (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) | |
18 | 16, 17 | sylib 208 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) |
19 | 18 | coeq2d 5317 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = (𝑉 ∘ 𝑉)) |
20 | 15, 19 | sseqtrd 3674 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∪ cun 3605 ⊆ wss 3607 I cid 5052 × cxp 5141 dom cdm 5143 ↾ cres 5145 ∘ ccom 5147 Rel wrel 5148 ‘cfv 5926 UnifOncust 22050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fv 5934 df-ust 22051 |
This theorem is referenced by: ustexsym 22066 ustex3sym 22068 |
Copyright terms: Public domain | W3C validator |