Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrupgr Structured version   Visualization version   GIF version

Theorem uspgrupgr 26266
 Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
uspgrupgr (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)

Proof of Theorem uspgrupgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2756 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2756 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2isuspgr 26242 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
4 f1f 6258 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
53, 4syl6bi 243 . . 3 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
61, 2isupgr 26174 . . 3 (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
75, 6sylibrd 249 . 2 (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph))
87pm2.43i 52 1 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2135  {crab 3050   ∖ cdif 3708  ∅c0 4054  𝒫 cpw 4298  {csn 4317   class class class wbr 4800  dom cdm 5262  ⟶wf 6041  –1-1→wf1 6042  ‘cfv 6045   ≤ cle 10263  2c2 11258  ♯chash 13307  Vtxcvtx 26069  iEdgciedg 26070  UPGraphcupgr 26170  USPGraphcuspgr 26238 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-nul 4937 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fv 6053  df-upgr 26172  df-uspgr 26240 This theorem is referenced by:  uspgrupgrushgr  26267  usgrupgr  26272  uspgrun  26275  uspgrunop  26276  uspgredg2vtxeu  26307  1loopgrnb0  26604  uspgr2wlkeq  26748  uspgrn2crct  26907  wlkiswwlks2  26980  wlkiswwlks  26981  wlklnwwlkn  26989  wlknwwlksninj  26994  wlknwwlksnsur  26995  wlkwwlkinj  27001  wlkwwlksur  27002  clwlkclwwlk  27121  wlk2v2e  27305  uspgropssxp  42258  uspgrsprf  42260
 Copyright terms: Public domain W3C validator