Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrbisymrelALT Structured version   Visualization version   GIF version

Theorem uspgrbisymrelALT 42292
Description: Alternate proof of uspgrbisymrel 42291 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uspgrbisymrel.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrbisymrel.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
uspgrbisymrelALT (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Distinct variable groups:   𝑒,𝑉,𝑞,𝑣   𝑉,𝑟,𝑥,𝑦   𝑒,𝑊,𝑞,𝑣   𝑥,𝑊,𝑦   𝑓,𝐺   𝑅,𝑓   𝑓,𝑉,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝐺(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝑊(𝑓,𝑟)

Proof of Theorem uspgrbisymrelALT
Dummy variables 𝑔 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6364 . . . . 5 (Pairs‘𝑉) ∈ V
21pwex 4998 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
3 mptexg 6650 . . . 4 (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
42, 3mp1i 13 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
5 eqid 2761 . . . . 5 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉)
6 uspgrbisymrel.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
75, 6uspgrex 42287 . . . 4 (𝑉𝑊𝐺 ∈ V)
8 mptexg 6650 . . . 4 (𝐺 ∈ V → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
97, 8syl 17 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
10 coexg 7284 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔𝐺 ↦ (2nd𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
114, 9, 10syl2anc 696 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
12 uspgrbisymrel.r . . . 4 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
13 eqid 2761 . . . 4 (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
145, 12, 13sprsymrelf1o 42277 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅)
15 eqid 2761 . . . 4 (𝑔𝐺 ↦ (2nd𝑔)) = (𝑔𝐺 ↦ (2nd𝑔))
165, 6, 15uspgrsprf1o 42286 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉))
17 f1oco 6322 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅 ∧ (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
1814, 16, 17syl2anc 696 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
19 f1oeq1 6290 . . 3 (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) → (𝑓:𝐺1-1-onto𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅))
2019spcegv 3435 . 2 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅 → ∃𝑓 𝑓:𝐺1-1-onto𝑅))
2111, 18, 20sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2140  wral 3051  wrex 3052  {crab 3055  Vcvv 3341  𝒫 cpw 4303  {cpr 4324   class class class wbr 4805  {copab 4865  cmpt 4882   × cxp 5265  ccom 5271  1-1-ontowf1o 6049  cfv 6050  2nd c2nd 7334  Vtxcvtx 26095  Edgcedg 26160  USPGraphcuspgr 26264  Pairscspr 42256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-n0 11506  df-xnn0 11577  df-z 11591  df-uz 11901  df-fz 12541  df-hash 13333  df-vtx 26097  df-iedg 26098  df-edg 26161  df-upgr 26198  df-uspgr 26266  df-spr 42257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator