![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ushgruhgr | Structured version Visualization version GIF version |
Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
ushgruhgr | ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2748 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2748 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | ushgrf 26128 | . . 3 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | f1f 6250 | . . 3 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
6 | 1, 2 | isuhgr 26125 | . 2 ⊢ (𝐺 ∈ USHGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
7 | 5, 6 | mpbird 247 | 1 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2127 ∖ cdif 3700 ∅c0 4046 𝒫 cpw 4290 {csn 4309 dom cdm 5254 ⟶wf 6033 –1-1→wf1 6034 ‘cfv 6037 Vtxcvtx 26044 iEdgciedg 26045 UHGraphcuhgr 26121 USHGraphcushgr 26122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-nul 4929 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fv 6045 df-uhgr 26123 df-ushgr 26124 |
This theorem is referenced by: ushgrun 26141 ushgrunop 26142 ushgredgedg 26291 ushgredgedgloop 26293 |
Copyright terms: Public domain | W3C validator |