![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ushgrf | Structured version Visualization version GIF version |
Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
ushgrf | ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrf.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isushgr 26155 | . 2 ⊢ (𝐺 ∈ USHGraph → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) |
4 | 3 | ibi 256 | 1 ⊢ (𝐺 ∈ USHGraph → 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∖ cdif 3712 ∅c0 4058 𝒫 cpw 4302 {csn 4321 dom cdm 5266 –1-1→wf1 6046 ‘cfv 6049 Vtxcvtx 26073 iEdgciedg 26074 USHGraphcushgr 26151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fv 6057 df-ushgr 26153 |
This theorem is referenced by: ushgruhgr 26163 uspgrupgrushgr 26271 ushgredgedg 26320 ushgredgedgloop 26322 |
Copyright terms: Public domain | W3C validator |