![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgruspgr | Structured version Visualization version GIF version |
Description: A simple graph is a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 15-Oct-2020.) |
Ref | Expression |
---|---|
usgruspgr | ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2760 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | isusgr 26247 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
4 | 2re 11282 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
5 | 4 | eqlei2 10340 | . . . . . . 7 ⊢ ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2) |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((♯‘𝑥) = 2 → (♯‘𝑥) ≤ 2)) |
7 | 6 | ss2rabi 3825 | . . . . 5 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
8 | f1ss 6267 | . . . . 5 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
9 | 7, 8 | mpan2 709 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) = 2} → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
10 | 3, 9 | syl6bi 243 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
11 | 1, 2 | isuspgr 26246 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
12 | 10, 11 | sylibrd 249 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)) |
13 | 12 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 {crab 3054 ∖ cdif 3712 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 {csn 4321 class class class wbr 4804 dom cdm 5266 –1-1→wf1 6046 ‘cfv 6049 ≤ cle 10267 2c2 11262 ♯chash 13311 Vtxcvtx 26073 iEdgciedg 26074 USPGraphcuspgr 26242 USGraphcusgr 26243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-i2m1 10196 ax-1ne0 10197 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-2 11271 df-uspgr 26244 df-usgr 26245 |
This theorem is referenced by: usgrumgruspgr 26274 usgruspgrb 26275 usgrupgr 26276 usgrislfuspgr 26278 usgredg2vtxeu 26312 usgredgedg 26321 usgredgleord 26324 vtxdusgrfvedg 26597 usgrn2cycl 26912 wlksnfi 27025 wlksnwwlknvbij 27026 rusgrnumwwlk 27097 clwlksfoclwwlkOLD 27217 clwlksf1clwwlkOLD 27223 clwlksndivn 27231 clwlknon2num 27529 numclwlk1lem2 27531 |
Copyright terms: Public domain | W3C validator |