![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrfilem | Structured version Visualization version GIF version |
Description: In a finite simple graph, the number of edges is finite iff the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
Ref | Expression |
---|---|
fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
usgrfilem.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
usgrfilem | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrfilem.f | . . 3 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
2 | rabfi 8353 | . . 3 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} ∈ Fin) | |
3 | 1, 2 | syl5eqel 2844 | . 2 ⊢ (𝐸 ∈ Fin → 𝐹 ∈ Fin) |
4 | uncom 3901 | . . . . 5 ⊢ (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) | |
5 | eqid 2761 | . . . . . 6 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
6 | 5, 1 | elnelun 4108 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) = 𝐸 |
7 | 4, 6 | eqtr2i 2784 | . . . 4 ⊢ 𝐸 = (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
8 | fusgredgfi.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
9 | fusgredgfi.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 8, 9 | fusgredgfi 26438 | . . . . . . 7 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
11 | 10 | anim1i 593 | . . . . . 6 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin ∧ 𝐹 ∈ Fin)) |
12 | 11 | ancomd 466 | . . . . 5 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → (𝐹 ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin)) |
13 | unfi 8395 | . . . . 5 ⊢ ((𝐹 ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) → (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ∈ Fin) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → (𝐹 ∪ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ∈ Fin) |
15 | 7, 14 | syl5eqel 2844 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝐹 ∈ Fin) → 𝐸 ∈ Fin) |
16 | 15 | ex 449 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐹 ∈ Fin → 𝐸 ∈ Fin)) |
17 | 3, 16 | impbid2 216 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∉ wnel 3036 {crab 3055 ∪ cun 3714 ‘cfv 6050 Fincfn 8124 Vtxcvtx 26095 Edgcedg 26160 FinUSGraphcfusgr 26429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-n0 11506 df-xnn0 11577 df-z 11591 df-uz 11901 df-fz 12541 df-hash 13333 df-edg 26161 df-upgr 26198 df-uspgr 26266 df-usgr 26267 df-fusgr 26430 |
This theorem is referenced by: fusgrfisstep 26442 cusgrsizeinds 26580 |
Copyright terms: Public domain | W3C validator |