MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexmpldifpr Structured version   Visualization version   GIF version

Theorem usgrexmpldifpr 26373
Description: Lemma for usgrexmpledg 26377: all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Assertion
Ref Expression
usgrexmpldifpr (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))

Proof of Theorem usgrexmpldifpr
StepHypRef Expression
1 0z 11595 . . . . . 6 0 ∈ ℤ
2 1z 11614 . . . . . 6 1 ∈ ℤ
31, 2pm3.2i 456 . . . . 5 (0 ∈ ℤ ∧ 1 ∈ ℤ)
4 2z 11616 . . . . . 6 2 ∈ ℤ
52, 4pm3.2i 456 . . . . 5 (1 ∈ ℤ ∧ 2 ∈ ℤ)
63, 5pm3.2i 456 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ))
7 ax-1ne0 10211 . . . . . . 7 1 ≠ 0
87necomi 2997 . . . . . 6 0 ≠ 1
9 2ne0 11319 . . . . . . 7 2 ≠ 0
109necomi 2997 . . . . . 6 0 ≠ 2
118, 10pm3.2i 456 . . . . 5 (0 ≠ 1 ∧ 0 ≠ 2)
1211orci 854 . . . 4 ((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2))
13 prneimg 4520 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (1 ∈ ℤ ∧ 2 ∈ ℤ)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) → {0, 1} ≠ {1, 2}))
146, 12, 13mp2 9 . . 3 {0, 1} ≠ {1, 2}
154, 1pm3.2i 456 . . . . 5 (2 ∈ ℤ ∧ 0 ∈ ℤ)
163, 15pm3.2i 456 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
17 1ne2 11447 . . . . . 6 1 ≠ 2
1817, 7pm3.2i 456 . . . . 5 (1 ≠ 2 ∧ 1 ≠ 0)
1918olci 855 . . . 4 ((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0))
20 prneimg 4520 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((0 ≠ 2 ∧ 0 ≠ 0) ∨ (1 ≠ 2 ∧ 1 ≠ 0)) → {0, 1} ≠ {2, 0}))
2116, 19, 20mp2 9 . . 3 {0, 1} ≠ {2, 0}
22 3nn 11393 . . . . . 6 3 ∈ ℕ
231, 22pm3.2i 456 . . . . 5 (0 ∈ ℤ ∧ 3 ∈ ℕ)
243, 23pm3.2i 456 . . . 4 ((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
25 1re 10245 . . . . . . 7 1 ∈ ℝ
26 1lt3 11403 . . . . . . 7 1 < 3
2725, 26ltneii 10356 . . . . . 6 1 ≠ 3
287, 27pm3.2i 456 . . . . 5 (1 ≠ 0 ∧ 1 ≠ 3)
2928olci 855 . . . 4 ((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3))
30 prneimg 4520 . . . 4 (((0 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) → {0, 1} ≠ {0, 3}))
3124, 29, 30mp2 9 . . 3 {0, 1} ≠ {0, 3}
3214, 21, 313pm3.2i 1423 . 2 ({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3})
335, 15pm3.2i 456 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ))
3418orci 854 . . . 4 ((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0))
35 prneimg 4520 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (2 ∈ ℤ ∧ 0 ∈ ℤ)) → (((1 ≠ 2 ∧ 1 ≠ 0) ∨ (2 ≠ 2 ∧ 2 ≠ 0)) → {1, 2} ≠ {2, 0}))
3633, 34, 35mp2 9 . . 3 {1, 2} ≠ {2, 0}
375, 23pm3.2i 456 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
3828orci 854 . . . 4 ((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3))
39 prneimg 4520 . . . 4 (((1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) → {1, 2} ≠ {0, 3}))
4037, 38, 39mp2 9 . . 3 {1, 2} ≠ {0, 3}
4115, 23pm3.2i 456 . . . 4 ((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ))
42 2re 11296 . . . . . . 7 2 ∈ ℝ
43 2lt3 11402 . . . . . . 7 2 < 3
4442, 43ltneii 10356 . . . . . 6 2 ≠ 3
459, 44pm3.2i 456 . . . . 5 (2 ≠ 0 ∧ 2 ≠ 3)
4645orci 854 . . . 4 ((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3))
47 prneimg 4520 . . . 4 (((2 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ∈ ℤ ∧ 3 ∈ ℕ)) → (((2 ≠ 0 ∧ 2 ≠ 3) ∨ (0 ≠ 0 ∧ 0 ≠ 3)) → {2, 0} ≠ {0, 3}))
4841, 46, 47mp2 9 . . 3 {2, 0} ≠ {0, 3}
4936, 40, 483pm3.2i 1423 . 2 ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})
5032, 49pm3.2i 456 1 (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))
Colors of variables: wff setvar class
Syntax hints:  wa 382  wo 836  w3a 1071  wcel 2145  wne 2943  {cpr 4319  0cc0 10142  1c1 10143  cn 11226  2c2 11276  3c3 11277  cz 11584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-z 11585
This theorem is referenced by:  usgrexmplef  26374  usgrexmpledg  26377
  Copyright terms: Public domain W3C validator