![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredg2vtxeuALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgredg2vtxeu 26312, using edgiedgb 26146, the general translation from (iEdg‘𝐺) to (Edg‘𝐺). (Contributed by AV, 18-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
usgredg2vtxeuALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgruhgr 26277 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
2 | eqid 2760 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 2 | uhgredgiedgb 26220 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥))) |
5 | eqid 2760 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
6 | 5, 2 | usgredgreu 26309 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝑌 ∈ ((iEdg‘𝐺)‘𝑥)) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}) |
7 | 6 | 3expia 1115 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
8 | 7 | 3adant3 1127 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
9 | eleq2 2828 | . . . . . . . 8 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ ((iEdg‘𝐺)‘𝑥))) | |
10 | eqeq1 2764 | . . . . . . . . 9 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝐸 = {𝑌, 𝑦} ↔ ((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) | |
11 | 10 | reubidv 3265 | . . . . . . . 8 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ↔ ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
12 | 9, 11 | imbi12d 333 | . . . . . . 7 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → ((𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) ↔ (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}))) |
13 | 12 | 3ad2ant3 1130 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → ((𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) ↔ (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}))) |
14 | 8, 13 | mpbird 247 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})) |
15 | 14 | 3exp 1113 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑥 ∈ dom (iEdg‘𝐺) → (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})))) |
16 | 15 | rexlimdv 3168 | . . 3 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}))) |
17 | 4, 16 | sylbid 230 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ (Edg‘𝐺) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}))) |
18 | 17 | 3imp 1102 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ∃!wreu 3052 {cpr 4323 dom cdm 5266 ‘cfv 6049 Vtxcvtx 26073 iEdgciedg 26074 Edgcedg 26138 UHGraphcuhgr 26150 USGraphcusgr 26243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-hash 13312 df-edg 26139 df-uhgr 26152 df-upgr 26176 df-umgr 26177 df-uspgr 26244 df-usgr 26245 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |