![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr2wspthons3 | Structured version Visualization version GIF version |
Description: A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
usgr2wspthon0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgr2wspthon0.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgr2wspthons3 | ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11387 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
2 | ne0i 4069 | . . . . . . 7 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) | |
3 | wspthsnonn0vne 27064 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) → 𝐴 ≠ 𝐶) | |
4 | 1, 2, 3 | sylancr 575 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → 𝐴 ≠ 𝐶) |
5 | simplr 752 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝐴 ≠ 𝐶) | |
6 | wpthswwlks2on 27109 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) = (𝐴(2 WWalksNOn 𝐺)𝐶)) | |
7 | 6 | eleq2d 2836 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
8 | 7 | biimpa 462 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
9 | 5, 8 | jca 501 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
10 | 9 | exp31 406 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))) |
11 | 10 | com13 88 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 → (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))) |
12 | 4, 11 | mpd 15 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐺 ∈ USGraph → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
13 | 12 | com12 32 | . . . 4 ⊢ (𝐺 ∈ USGraph → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
14 | 7 | biimprd 238 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
15 | 14 | expimpd 441 | . . . 4 ⊢ (𝐺 ∈ USGraph → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))) |
16 | 13, 15 | impbid 202 | . . 3 ⊢ (𝐺 ∈ USGraph → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
17 | 16 | adantr 466 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
18 | usgrumgr 26296 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
19 | usgr2wspthon0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
20 | usgr2wspthon0.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
21 | 19, 20 | umgrwwlks2on 27105 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
22 | 18, 21 | sylan 569 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
23 | 22 | anbi2d 614 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))) |
24 | 3anass 1080 | . . 3 ⊢ ((𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
25 | 23, 24 | syl6bbr 278 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐶 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
26 | 17, 25 | bitrd 268 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∅c0 4063 {cpr 4318 ‘cfv 6031 (class class class)co 6793 ℕcn 11222 2c2 11272 〈“cs3 13796 Vtxcvtx 26095 Edgcedg 26160 UMGraphcumgr 26197 USGraphcusgr 26266 WWalksNOn cwwlksnon 26955 WSPathsNOn cwwspthsnon 26957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-ac2 9487 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ifp 1050 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-ac 9139 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-concat 13497 df-s1 13498 df-s2 13802 df-s3 13803 df-edg 26161 df-uhgr 26174 df-upgr 26198 df-umgr 26199 df-uspgr 26267 df-usgr 26268 df-wlks 26730 df-wlkson 26731 df-trls 26824 df-trlson 26825 df-pths 26847 df-spths 26848 df-pthson 26849 df-spthson 26850 df-wwlks 26958 df-wwlksn 26959 df-wwlksnon 26960 df-wspthsnon 26962 |
This theorem is referenced by: usgr2wspthon 27114 |
Copyright terms: Public domain | W3C validator |