![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr2wlkspthlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for usgr2wlkspth 26886. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 27-Jan-2021.) |
Ref | Expression |
---|---|
usgr2wlkspthlem2 | ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐺 ∈ USGraph) | |
2 | 1 | anim2i 594 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (𝐹(Walks‘𝐺)𝑃 ∧ 𝐺 ∈ USGraph)) |
3 | 2 | ancomd 466 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃)) |
4 | 3simpc 1147 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) | |
5 | 4 | adantl 473 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
6 | usgr2wlkneq 26883 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) | |
7 | 3, 5, 6 | syl2anc 696 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) |
8 | simpl 474 | . . . 4 ⊢ ((((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2))) | |
9 | fvex 6363 | . . . . 5 ⊢ (𝑃‘0) ∈ V | |
10 | fvex 6363 | . . . . 5 ⊢ (𝑃‘1) ∈ V | |
11 | fvex 6363 | . . . . 5 ⊢ (𝑃‘2) ∈ V | |
12 | 9, 10, 11 | 3pm3.2i 1424 | . . . 4 ⊢ ((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) |
13 | 8, 12 | jctil 561 | . . 3 ⊢ ((((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)))) |
14 | funcnvs3 13879 | . . 3 ⊢ ((((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2))) → Fun ◡〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) | |
15 | 7, 13, 14 | 3syl 18 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) |
16 | eqid 2760 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
17 | 16 | wlkpwrd 26744 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word (Vtx‘𝐺)) |
18 | wlklenvp1 26745 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
19 | oveq1 6821 | . . . . . . . 8 ⊢ ((♯‘𝐹) = 2 → ((♯‘𝐹) + 1) = (2 + 1)) | |
20 | 2p1e3 11363 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
21 | 19, 20 | syl6eq 2810 | . . . . . . 7 ⊢ ((♯‘𝐹) = 2 → ((♯‘𝐹) + 1) = 3) |
22 | 21 | 3ad2ant2 1129 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) + 1) = 3) |
23 | 18, 22 | sylan9eq 2814 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (♯‘𝑃) = 3) |
24 | wrdlen3s3 13913 | . . . . 5 ⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 3) → 𝑃 = 〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) | |
25 | 17, 23, 24 | syl2an2r 911 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → 𝑃 = 〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) |
26 | 25 | cnveqd 5453 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → ◡𝑃 = ◡〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) |
27 | 26 | funeqd 6071 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (Fun ◡𝑃 ↔ Fun ◡〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉)) |
28 | 15, 27 | mpbird 247 | 1 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 class class class wbr 4804 ◡ccnv 5265 Fun wfun 6043 ‘cfv 6049 (class class class)co 6814 0cc0 10148 1c1 10149 + caddc 10151 2c2 11282 3c3 11283 ♯chash 13331 Word cword 13497 〈“cs3 13807 Vtxcvtx 26094 USGraphcusgr 26264 Walkscwlks 26723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1051 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-xnn0 11576 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 df-hash 13332 df-word 13505 df-concat 13507 df-s1 13508 df-s2 13813 df-s3 13814 df-edg 26160 df-uhgr 26173 df-upgr 26197 df-umgr 26198 df-uspgr 26265 df-usgr 26266 df-wlks 26726 |
This theorem is referenced by: usgr2wlkspth 26886 |
Copyright terms: Public domain | W3C validator |