MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkneq Structured version   Visualization version   GIF version

Theorem usgr2wlkneq 26862
Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.)
Assertion
Ref Expression
usgr2wlkneq (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))

Proof of Theorem usgr2wlkneq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 26276 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 eqid 2760 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2760 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgriswlk 26747 . . . 4 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
51, 4syl 17 . . 3 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
6 2wlklem 26773 . . . . . . . . . . . 12 (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7 simplll 815 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → 𝐺 ∈ USGraph)
8 fvex 6362 . . . . . . . . . . . . . . 15 (𝑃‘0) ∈ V
93usgrnloopv 26291 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
107, 8, 9sylancl 697 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
11 fvex 6362 . . . . . . . . . . . . . . 15 (𝑃‘1) ∈ V
123usgrnloopv 26291 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
137, 11, 12sylancl 697 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
1410, 13anim12d 587 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))))
15 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹‘0) = (𝐹‘1) → ((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)))
1615eqeq1d 2762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))
17 eqtr2 2780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
18 prcom 4411 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {(𝑃‘1), (𝑃‘2)} = {(𝑃‘2), (𝑃‘1)}
1918eqeq2i 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} ↔ {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
20 fvex 6362 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃‘2) ∈ V
218, 20preqr1 4524 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)} → (𝑃‘0) = (𝑃‘2))
2219, 21sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))
2317, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2))
2423ex 449 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2)))
2516, 24syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))))
2625impd 446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘0) = (𝐹‘1) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2)))
2726com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝐹‘0) = (𝐹‘1) → (𝑃‘0) = (𝑃‘2)))
2827necon3d 2953 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘2) → (𝐹‘0) ≠ (𝐹‘1)))
2928com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
3029adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
31 simpl 474 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (𝑃‘0) ≠ (𝑃‘1))
3231adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘1))
33 simpl 474 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘2))
34 simprr 813 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘1) ≠ (𝑃‘2))
3532, 33, 343jca 1123 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)))
3630, 35jctild 567 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
3736ex 449 . . . . . . . . . . . . . . . 16 ((𝑃‘0) ≠ (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3837com23 86 . . . . . . . . . . . . . . 15 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3938adantl 473 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4039adantr 472 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4114, 40mpdd 43 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
426, 41syl5bi 232 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
4342ex 449 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝑃:(0...2)⟶(Vtx‘𝐺) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4443com23 86 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4544ex 449 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
46 fveq2 6352 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2))
4746neeq2d 2992 . . . . . . . . 9 ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2)))
48 oveq2 6821 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
49 fzo0to2pr 12747 . . . . . . . . . . . 12 (0..^2) = {0, 1}
5048, 49syl6eq 2810 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
5150raleqdv 3283 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
52 oveq2 6821 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
5352feq2d 6192 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0...2)⟶(Vtx‘𝐺)))
5453imbi1d 330 . . . . . . . . . 10 ((♯‘𝐹) = 2 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) ↔ (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
5551, 54imbi12d 333 . . . . . . . . 9 ((♯‘𝐹) = 2 → ((∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))) ↔ (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5647, 55imbi12d 333 . . . . . . . 8 ((♯‘𝐹) = 2 → (((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))) ↔ ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5745, 56syl5ibrcom 237 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5857impd 446 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5958com24 95 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
6059ex 449 . . . 4 (𝐺 ∈ USGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
61603impd 1442 . . 3 (𝐺 ∈ USGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
625, 61sylbid 230 . 2 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
6362imp31 447 1 (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  Vcvv 3340  {cpr 4323   class class class wbr 4804  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129   + caddc 10131  2c2 11262  ...cfz 12519  ..^cfzo 12659  chash 13311  Word cword 13477  Vtxcvtx 26073  iEdgciedg 26074  UPGraphcupgr 26174  USGraphcusgr 26243  Walkscwlks 26702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-edg 26139  df-uhgr 26152  df-upgr 26176  df-umgr 26177  df-uspgr 26244  df-usgr 26245  df-wlks 26705
This theorem is referenced by:  usgr2wlkspthlem1  26863  usgr2wlkspthlem2  26864
  Copyright terms: Public domain W3C validator