MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2pthlem Structured version   Visualization version   GIF version

Theorem usgr2pthlem 26715
Description: Lemma for usgr2pth 26716. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtx‘𝐺)
usgr2pthlem.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgr2pthlem ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
Distinct variable groups:   𝑖,𝐹   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑖,𝐼   𝑥,𝐼,𝑦,𝑧   𝑃,𝑖   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem usgr2pthlem
StepHypRef Expression
1 0nn0 11345 . . . . . . . . . . . . . 14 0 ∈ ℕ0
2 2nn0 11347 . . . . . . . . . . . . . 14 2 ∈ ℕ0
3 0le2 11149 . . . . . . . . . . . . . 14 0 ≤ 2
4 elfz2nn0 12469 . . . . . . . . . . . . . 14 (0 ∈ (0...2) ↔ (0 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 0 ≤ 2))
51, 2, 3, 4mpbir3an 1263 . . . . . . . . . . . . 13 0 ∈ (0...2)
6 ffvelrn 6397 . . . . . . . . . . . . 13 ((𝑃:(0...2)⟶𝑉 ∧ 0 ∈ (0...2)) → (𝑃‘0) ∈ 𝑉)
75, 6mpan2 707 . . . . . . . . . . . 12 (𝑃:(0...2)⟶𝑉 → (𝑃‘0) ∈ 𝑉)
87adantl 481 . . . . . . . . . . 11 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘0) ∈ 𝑉)
9 1nn0 11346 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
10 1le2 11279 . . . . . . . . . . . . . . . . . 18 1 ≤ 2
11 elfz2nn0 12469 . . . . . . . . . . . . . . . . . 18 (1 ∈ (0...2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 1 ≤ 2))
129, 2, 10, 11mpbir3an 1263 . . . . . . . . . . . . . . . . 17 1 ∈ (0...2)
13 ffvelrn 6397 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...2)⟶𝑉 ∧ 1 ∈ (0...2)) → (𝑃‘1) ∈ 𝑉)
1412, 13mpan2 707 . . . . . . . . . . . . . . . 16 (𝑃:(0...2)⟶𝑉 → (𝑃‘1) ∈ 𝑉)
1514adantl 481 . . . . . . . . . . . . . . 15 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
16 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph)
17 fvex 6239 . . . . . . . . . . . . . . . . . . 19 (𝑃‘1) ∈ V
1816, 17jctir 560 . . . . . . . . . . . . . . . . . 18 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V))
19 prcom 4299 . . . . . . . . . . . . . . . . . . . . . 22 {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘0)}
2019eqeq2i 2663 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)})
2120biimpi 206 . . . . . . . . . . . . . . . . . . . 20 ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)})
2221adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)})
2322ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)})
24 usgr2pthlem.i . . . . . . . . . . . . . . . . . . 19 𝐼 = (iEdg‘𝐺)
2524usgrnloopv 26137 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V) → ((𝐼‘(𝐹‘0)) = {(𝑃‘1), (𝑃‘0)} → (𝑃‘1) ≠ (𝑃‘0)))
2618, 23, 25sylc 65 . . . . . . . . . . . . . . . . 17 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘1) ≠ (𝑃‘0))
2726adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ≠ (𝑃‘0))
2817elsn 4225 . . . . . . . . . . . . . . . . 17 ((𝑃‘1) ∈ {(𝑃‘0)} ↔ (𝑃‘1) = (𝑃‘0))
2928necon3bbii 2870 . . . . . . . . . . . . . . . 16 (¬ (𝑃‘1) ∈ {(𝑃‘0)} ↔ (𝑃‘1) ≠ (𝑃‘0))
3027, 29sylibr 224 . . . . . . . . . . . . . . 15 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ¬ (𝑃‘1) ∈ {(𝑃‘0)})
3115, 30eldifd 3618 . . . . . . . . . . . . . 14 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)}))
3231adantr 480 . . . . . . . . . . . . 13 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)}))
33 sneq 4220 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑃‘0) → {𝑥} = {(𝑃‘0)})
3433difeq2d 3761 . . . . . . . . . . . . . . 15 (𝑥 = (𝑃‘0) → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {(𝑃‘0)}))
3534eleq2d 2716 . . . . . . . . . . . . . 14 (𝑥 = (𝑃‘0) → ((𝑃‘1) ∈ (𝑉 ∖ {𝑥}) ↔ (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)})))
3635adantl 481 . . . . . . . . . . . . 13 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → ((𝑃‘1) ∈ (𝑉 ∖ {𝑥}) ↔ (𝑃‘1) ∈ (𝑉 ∖ {(𝑃‘0)})))
3732, 36mpbird 247 . . . . . . . . . . . 12 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑃‘1) ∈ (𝑉 ∖ {𝑥}))
38 2re 11128 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
3938leidi 10600 . . . . . . . . . . . . . . . . . . 19 2 ≤ 2
40 elfz2nn0 12469 . . . . . . . . . . . . . . . . . . 19 (2 ∈ (0...2) ↔ (2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 ≤ 2))
412, 2, 39, 40mpbir3an 1263 . . . . . . . . . . . . . . . . . 18 2 ∈ (0...2)
42 ffvelrn 6397 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...2)⟶𝑉 ∧ 2 ∈ (0...2)) → (𝑃‘2) ∈ 𝑉)
4341, 42mpan2 707 . . . . . . . . . . . . . . . . 17 (𝑃:(0...2)⟶𝑉 → (𝑃‘2) ∈ 𝑉)
4443adantl 481 . . . . . . . . . . . . . . . 16 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
4524usgrf1 26112 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→ran 𝐼)
4645ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 𝐼:dom 𝐼1-1→ran 𝐼)
47 simpl 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → 𝐹:(0..^2)–1-1→dom 𝐼)
4847ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 𝐹:(0..^2)–1-1→dom 𝐼)
4946, 48jca 553 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝐼:dom 𝐼1-1→ran 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
50 2nn 11223 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ
51 lbfzo0 12547 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
5250, 51mpbir 221 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (0..^2)
53 1lt2 11232 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 2
54 elfzo0 12548 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
559, 50, 53, 54mpbir3an 1263 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ (0..^2)
5652, 55pm3.2i 470 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ (0..^2) ∧ 1 ∈ (0..^2))
5756a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (0 ∈ (0..^2) ∧ 1 ∈ (0..^2)))
58 0ne1 11126 . . . . . . . . . . . . . . . . . . . . 21 0 ≠ 1
5958a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → 0 ≠ 1)
6049, 57, 593jca 1261 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐼:dom 𝐼1-1→ran 𝐼𝐹:(0..^2)–1-1→dom 𝐼) ∧ (0 ∈ (0..^2) ∧ 1 ∈ (0..^2)) ∧ 0 ≠ 1))
61 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
6261ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
63 2f1fvneq 6557 . . . . . . . . . . . . . . . . . . 19 (((𝐼:dom 𝐼1-1→ran 𝐼𝐹:(0..^2)–1-1→dom 𝐼) ∧ (0 ∈ (0..^2) ∧ 1 ∈ (0..^2)) ∧ 0 ≠ 1) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
6460, 62, 63sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)})
65 necom 2876 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘0) ≠ (𝑃‘2))
66 fvex 6239 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘0) ∈ V
67 fvex 6239 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘2) ∈ V
6866, 17, 673pm3.2i 1259 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V)
69 fvexd 6241 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘0) ∈ V)
70 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
7170ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
7216, 69, 71jca31 556 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7372adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7424usgrnloopv 26137 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
7574imp 444 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) ∧ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) → (𝑃‘0) ≠ (𝑃‘1))
7673, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘0) ≠ (𝑃‘1))
77 pr1nebg 4422 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) ∧ (𝑃‘0) ≠ (𝑃‘1)) → ((𝑃‘0) ≠ (𝑃‘2) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
7868, 76, 77sylancr 696 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝑃‘0) ≠ (𝑃‘2) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
7965, 78syl5bb 272 . . . . . . . . . . . . . . . . . 18 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝑃‘2) ≠ (𝑃‘0) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)}))
8064, 79mpbird 247 . . . . . . . . . . . . . . . . 17 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ≠ (𝑃‘0))
81 fvexd 6241 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝑃‘2) ∈ V)
82 prcom 4299 . . . . . . . . . . . . . . . . . . . . . . . 24 {(𝑃‘1), (𝑃‘2)} = {(𝑃‘2), (𝑃‘1)}
8382eqeq2i 2663 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})
8483biimpi 206 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})
8584adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})
8685ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)})
8716, 81, 86jca31 556 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) → ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}))
8887adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}))
8924usgrnloopv 26137 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) → ((𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)} → (𝑃‘2) ≠ (𝑃‘1)))
9089imp 444 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USGraph ∧ (𝑃‘2) ∈ V) ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘2), (𝑃‘1)}) → (𝑃‘2) ≠ (𝑃‘1))
9188, 90syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ≠ (𝑃‘1))
9280, 91nelprd 4236 . . . . . . . . . . . . . . . 16 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → ¬ (𝑃‘2) ∈ {(𝑃‘0), (𝑃‘1)})
9344, 92eldifd 3618 . . . . . . . . . . . . . . 15 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)}))
9493ad2antrr 762 . . . . . . . . . . . . . 14 ((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)}))
95 preq12 4302 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)})
9695difeq2d 3761 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → (𝑉 ∖ {𝑥, 𝑦}) = (𝑉 ∖ {(𝑃‘0), (𝑃‘1)}))
9796eleq2d 2716 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) → ((𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦}) ↔ (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)})))
9897adantll 750 . . . . . . . . . . . . . 14 ((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → ((𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦}) ↔ (𝑃‘2) ∈ (𝑉 ∖ {(𝑃‘0), (𝑃‘1)})))
9994, 98mpbird 247 . . . . . . . . . . . . 13 ((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (𝑃‘2) ∈ (𝑉 ∖ {𝑥, 𝑦}))
100 eqcom 2658 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃‘0) ↔ (𝑃‘0) = 𝑥)
101 eqcom 2658 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑃‘1) ↔ (𝑃‘1) = 𝑦)
102 eqcom 2658 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑃‘2) ↔ (𝑃‘2) = 𝑧)
103100, 101, 1023anbi123i 1270 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1) ∧ 𝑧 = (𝑃‘2)) ↔ ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧))
104103biimpi 206 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1) ∧ 𝑧 = (𝑃‘2)) → ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧))
105104ad4ant123 1319 . . . . . . . . . . . . . . . . 17 ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧))
106100biimpi 206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑃‘0) → (𝑃‘0) = 𝑥)
107106ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘0) = 𝑥)
108101biimpi 206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑃‘1) → (𝑃‘1) = 𝑦)
109108ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘1) = 𝑦)
110107, 109preq12d 4308 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → {(𝑃‘0), (𝑃‘1)} = {𝑥, 𝑦})
111110eqeq2d 2661 . . . . . . . . . . . . . . . . . . 19 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ (𝐼‘(𝐹‘0)) = {𝑥, 𝑦}))
112102biimpi 206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑃‘2) → (𝑃‘2) = 𝑧)
113112adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (𝑃‘2) = 𝑧)
114109, 113preq12d 4308 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → {(𝑃‘1), (𝑃‘2)} = {𝑦, 𝑧})
115114eqeq2d 2661 . . . . . . . . . . . . . . . . . . 19 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → ((𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))
116111, 115anbi12d 747 . . . . . . . . . . . . . . . . . 18 (((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))
117116biimpa 500 . . . . . . . . . . . . . . . . 17 ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))
118105, 117jca 553 . . . . . . . . . . . . . . . 16 ((((𝑥 = (𝑃‘0) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))
119118exp41 637 . . . . . . . . . . . . . . 15 (𝑥 = (𝑃‘0) → (𝑦 = (𝑃‘1) → (𝑧 = (𝑃‘2) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
120119adantl 481 . . . . . . . . . . . . . 14 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (𝑦 = (𝑃‘1) → (𝑧 = (𝑃‘2) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
121120imp31 447 . . . . . . . . . . . . 13 (((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) ∧ 𝑧 = (𝑃‘2)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
12299, 121rspcimedv 3342 . . . . . . . . . . . 12 ((((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) ∧ 𝑦 = (𝑃‘1)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
12337, 122rspcimedv 3342 . . . . . . . . . . 11 (((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) ∧ 𝑥 = (𝑃‘0)) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
1248, 123rspcimedv 3342 . . . . . . . . . 10 ((((𝐹:(0..^2)–1-1→dom 𝐼 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) ∧ 𝐺 ∈ USGraph) ∧ 𝑃:(0...2)⟶𝑉) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
125124exp41 637 . . . . . . . . 9 (𝐹:(0..^2)–1-1→dom 𝐼 → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))))
126125com15 101 . . . . . . . 8 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))))
127126pm2.43i 52 . . . . . . 7 (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐺 ∈ USGraph → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
128127com12 32 . . . . . 6 (𝐺 ∈ USGraph → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
129128adantr 480 . . . . 5 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
130 oveq2 6698 . . . . . . . 8 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = (0..^2))
131130raleqdv 3174 . . . . . . 7 ((#‘𝐹) = 2 → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^2)(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
132 fzo0to2pr 12593 . . . . . . . . 9 (0..^2) = {0, 1}
133132raleqi 3172 . . . . . . . 8 (∀𝑖 ∈ (0..^2)(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
134 2wlklem 26619 . . . . . . . 8 (∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
135133, 134bitri 264 . . . . . . 7 (∀𝑖 ∈ (0..^2)(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
136131, 135syl6bb 276 . . . . . 6 ((#‘𝐹) = 2 → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
137136adantl 481 . . . . 5 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
138 oveq2 6698 . . . . . . . 8 ((#‘𝐹) = 2 → (0...(#‘𝐹)) = (0...2))
139138feq2d 6069 . . . . . . 7 ((#‘𝐹) = 2 → (𝑃:(0...(#‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
140139adantl 481 . . . . . 6 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝑃:(0...(#‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
141 f1eq2 6135 . . . . . . . . 9 ((0..^(#‘𝐹)) = (0..^2) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
142130, 141syl 17 . . . . . . . 8 ((#‘𝐹) = 2 → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
143142imbi1d 330 . . . . . . 7 ((#‘𝐹) = 2 → ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
144143adantl 481 . . . . . 6 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
145140, 144imbi12d 333 . . . . 5 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ((𝑃:(0...(#‘𝐹))⟶𝑉 → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) ↔ (𝑃:(0...2)⟶𝑉 → (𝐹:(0..^2)–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
146129, 137, 1453imtr4d 283 . . . 4 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝑃:(0...(#‘𝐹))⟶𝑉 → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
147146com14 96 . . 3 (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝑃:(0...(#‘𝐹))⟶𝑉 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
148147com23 86 . 2 (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → (𝑃:(0...(#‘𝐹))⟶𝑉 → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
1491483imp 1275 1 ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  {csn 4210  {cpr 4212   class class class wbr 4685  dom cdm 5143  ran crn 5144  wf 5922  1-1wf1 5923  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cn 11058  2c2 11108  0cn0 11330  ...cfz 12364  ..^cfzo 12504  #chash 13157  Vtxcvtx 25919  iEdgciedg 25920  USGraphcusgr 26089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-umgr 26023  df-usgr 26091
This theorem is referenced by:  usgr2pth  26716
  Copyright terms: Public domain W3C validator