Step | Hyp | Ref
| Expression |
1 | | usgr2pthspth 26714 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
2 | | usgrupgr 26122 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UPGraph) |
3 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
𝐺 ∈
UPGraph) |
4 | | isspth 26676 |
. . . . . . . . . . 11
⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
5 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃))) |
6 | | usgr2pthlem.v |
. . . . . . . . . . . . 13
⊢ 𝑉 = (Vtx‘𝐺) |
7 | | usgr2pthlem.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (iEdg‘𝐺) |
8 | 6, 7 | upgrf1istrl 26656 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
9 | 8 | anbi1d 741 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
10 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 2
→ (0..^(#‘𝐹)) =
(0..^2)) |
11 | | f1eq2 6135 |
. . . . . . . . . . . . . . . . . . 19
⊢
((0..^(#‘𝐹)) =
(0..^2) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ↔ 𝐹:(0..^2)–1-1→dom 𝐼)) |
13 | 12 | biimpd 219 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^2)–1-1→dom 𝐼)) |
14 | 13 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^2)–1-1→dom 𝐼)) |
15 | 14 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
16 | 15 | 3ad2ant1 1102 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
17 | 16 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼)) |
18 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝐹) = 2
→ (0...(#‘𝐹)) =
(0...2)) |
19 | 18 | feq2d 6069 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 2
→ (𝑃:(0...(#‘𝐹))⟶𝑉 ↔ 𝑃:(0...2)⟶𝑉)) |
20 | | df-f1 5931 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...2)–1-1→𝑉 ↔ (𝑃:(0...2)⟶𝑉 ∧ Fun ◡𝑃)) |
21 | 20 | simplbi2 654 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃:(0...2)⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉)) |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 2
→ (𝑃:(0...2)⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
23 | 19, 22 | sylbid 230 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐹) = 2
→ (𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
24 | 23 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun ◡𝑃 → 𝑃:(0...2)–1-1→𝑉))) |
25 | 24 | com3l 89 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun ◡𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉))) |
26 | 25 | 3ad2ant2 1103 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (Fun ◡𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉))) |
27 | 26 | imp 444 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉)) |
28 | 27 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1→𝑉)) |
29 | 6, 7 | usgr2pthlem 26715 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
30 | 29 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) |
31 | 17, 28, 30 | 3jcad 1262 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
32 | 31 | ex 449 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UPGraph → (((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
33 | 9, 32 | sylbid 230 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
34 | 5, 33 | sylbid 230 |
. . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
35 | 34 | com23 86 |
. . . . . . . 8
⊢ (𝐺 ∈ UPGraph → ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
36 | 3, 35 | mpcom 38 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
37 | 1, 36 | sylbid 230 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
38 | 37 | ex 449 |
. . . . 5
⊢ (𝐺 ∈ USGraph →
((#‘𝐹) = 2 →
(𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
39 | 38 | com13 88 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → ((#‘𝐹) = 2 → (𝐺 ∈ USGraph → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))) |
40 | 39 | imp 444 |
. . 3
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) → (𝐺 ∈ USGraph → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
41 | 40 | com12 32 |
. 2
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |
42 | | 2nn0 11347 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
43 | | f1f 6139 |
. . . . . 6
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → 𝐹:(0..^2)⟶dom 𝐼) |
44 | | fnfzo0hash 13272 |
. . . . . 6
⊢ ((2
∈ ℕ0 ∧ 𝐹:(0..^2)⟶dom 𝐼) → (#‘𝐹) = 2) |
45 | 42, 43, 44 | sylancr 696 |
. . . . 5
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (#‘𝐹) = 2) |
46 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 =
(#‘𝐹) → (0..^2)
= (0..^(#‘𝐹))) |
47 | 46 | eqcoms 2659 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 2
→ (0..^2) = (0..^(#‘𝐹))) |
48 | | f1eq2 6135 |
. . . . . . . . . . . . . . . . 17
⊢ ((0..^2)
= (0..^(#‘𝐹)) →
(𝐹:(0..^2)–1-1→dom 𝐼 ↔ 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^2)–1-1→dom 𝐼 ↔ 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)) |
50 | 49 | biimpd 219 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^2)–1-1→dom 𝐼 → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)) |
51 | 50 | imp 444 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
52 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢
((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
53 | 52 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
54 | | f1f 6139 |
. . . . . . . . . . . . . . 15
⊢ (𝑃:(0...2)–1-1→𝑉 → 𝑃:(0...2)⟶𝑉) |
55 | | oveq2 6698 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 =
(#‘𝐹) → (0...2)
= (0...(#‘𝐹))) |
56 | 55 | eqcoms 2659 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 2
→ (0...2) = (0...(#‘𝐹))) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (0...2) = (0...(#‘𝐹))) |
58 | 57 | feq2d 6069 |
. . . . . . . . . . . . . . 15
⊢
(((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)⟶𝑉 ↔ 𝑃:(0...(#‘𝐹))⟶𝑉)) |
59 | 54, 58 | syl5ib 234 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)–1-1→𝑉 → 𝑃:(0...(#‘𝐹))⟶𝑉)) |
60 | 59 | imp 444 |
. . . . . . . . . . . . 13
⊢
((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → 𝑃:(0...(#‘𝐹))⟶𝑉) |
61 | 60 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝑃:(0...(#‘𝐹))⟶𝑉) |
62 | | eqcom 2658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘0) = 𝑥 ↔ 𝑥 = (𝑃‘0)) |
63 | 62 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘0) = 𝑥 → 𝑥 = (𝑃‘0)) |
64 | 63 | 3ad2ant1 1102 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑥 = (𝑃‘0)) |
65 | | eqcom 2658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘1) = 𝑦 ↔ 𝑦 = (𝑃‘1)) |
66 | 65 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘1) = 𝑦 → 𝑦 = (𝑃‘1)) |
67 | 66 | 3ad2ant2 1103 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑦 = (𝑃‘1)) |
68 | 64, 67 | preq12d 4308 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)}) |
69 | 68 | eqeq2d 2661 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
70 | 69 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
72 | 71 | impcom 445 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) |
73 | | eqcom 2658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘2) = 𝑧 ↔ 𝑧 = (𝑃‘2)) |
74 | 73 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘2) = 𝑧 → 𝑧 = (𝑃‘2)) |
75 | 74 | 3ad2ant3 1104 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑧 = (𝑃‘2)) |
76 | 67, 75 | preq12d 4308 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑦, 𝑧} = {(𝑃‘1), (𝑃‘2)}) |
77 | 76 | eqeq2d 2661 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
78 | 77 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
79 | 78 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
80 | 79 | impcom 445 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) |
81 | 72, 80 | jca 553 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
82 | 81 | rexlimivw 3058 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑧 ∈
(𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
83 | 82 | rexlimivw 3058 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑦 ∈
(𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
84 | 83 | rexlimivw 3058 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
85 | 84 | a1i13 27 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 2
→ (∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
86 | | fzo0to2pr 12593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0..^2) =
{0, 1} |
87 | 10, 86 | syl6eq 2701 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 2
→ (0..^(#‘𝐹)) =
{0, 1}) |
88 | 87 | raleqdv 3174 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐹) = 2
→ (∀𝑖 ∈
(0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
89 | | 2wlklem 26619 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑖 ∈
{0, 1} (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
90 | 88, 89 | syl6bb 276 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 2
→ (∀𝑖 ∈
(0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
91 | 90 | imbi2d 329 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 2
→ ((𝐺 ∈ USGraph
→ ∀𝑖 ∈
(0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
92 | 85, 91 | sylibrd 249 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 2
→ (∃𝑥 ∈
𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
93 | 92 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢
((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
94 | 93 | imp 444 |
. . . . . . . . . . . . 13
⊢
(((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
95 | 94 | imp 444 |
. . . . . . . . . . . 12
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
96 | 53, 61, 95 | 3jca 1261 |
. . . . . . . . . . 11
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
97 | 20 | simprbi 479 |
. . . . . . . . . . . . 13
⊢ (𝑃:(0...2)–1-1→𝑉 → Fun ◡𝑃) |
98 | 97 | adantl 481 |
. . . . . . . . . . . 12
⊢
((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) → Fun ◡𝑃) |
99 | 98 | ad2antrr 762 |
. . . . . . . . . . 11
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → Fun ◡𝑃) |
100 | 96, 99 | jca 553 |
. . . . . . . . . 10
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃)) |
101 | 5, 9 | bitrd 268 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
102 | 2, 101 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
103 | 102 | adantl 481 |
. . . . . . . . . 10
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun ◡𝑃))) |
104 | 100, 103 | mpbird 247 |
. . . . . . . . 9
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(SPaths‘𝐺)𝑃) |
105 | | simpr 476 |
. . . . . . . . . 10
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph) |
106 | | simp-4l 823 |
. . . . . . . . . 10
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (#‘𝐹) = 2) |
107 | 105, 106,
1 | syl2anc 694 |
. . . . . . . . 9
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
108 | 104, 107 | mpbird 247 |
. . . . . . . 8
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(Paths‘𝐺)𝑃) |
109 | 108, 106 | jca 553 |
. . . . . . 7
⊢
((((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2)) |
110 | 109 | ex 449 |
. . . . . 6
⊢
(((((#‘𝐹) = 2
∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1→𝑉) ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))) |
111 | 110 | exp41 637 |
. . . . 5
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1→𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2)))))) |
112 | 45, 111 | mpcom 38 |
. . . 4
⊢ (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1→𝑉 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))))) |
113 | 112 | 3imp 1275 |
. . 3
⊢ ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))) |
114 | 113 | com12 32 |
. 2
⊢ (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))) |
115 | 41, 114 | impbid 202 |
1
⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) |