MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2pth Structured version   Visualization version   GIF version

Theorem usgr2pth 26716
Description: In a simple graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
usgr2pthlem.v 𝑉 = (Vtx‘𝐺)
usgr2pthlem.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgr2pth (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐼,𝑦,𝑧   𝑥,𝑃,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem usgr2pth
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 usgr2pthspth 26714 . . . . . . 7 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹(Paths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
2 usgrupgr 26122 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
32adantr 480 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐺 ∈ UPGraph)
4 isspth 26676 . . . . . . . . . . 11 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
54a1i 11 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)))
6 usgr2pthlem.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
7 usgr2pthlem.i . . . . . . . . . . . . 13 𝐼 = (iEdg‘𝐺)
86, 7upgrf1istrl 26656 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
98anbi1d 741 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
10 oveq2 6698 . . . . . . . . . . . . . . . . . . 19 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = (0..^2))
11 f1eq2 6135 . . . . . . . . . . . . . . . . . . 19 ((0..^(#‘𝐹)) = (0..^2) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18 ((#‘𝐹) = 2 → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1312biimpd 219 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) = 2 → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1413adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝐹:(0..^2)–1-1→dom 𝐼))
1514com12 32 . . . . . . . . . . . . . . 15 (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
16153ad2ant1 1102 . . . . . . . . . . . . . 14 ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
1716ad2antrl 764 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝐹:(0..^2)–1-1→dom 𝐼))
18 oveq2 6698 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝐹) = 2 → (0...(#‘𝐹)) = (0...2))
1918feq2d 6069 . . . . . . . . . . . . . . . . . . 19 ((#‘𝐹) = 2 → (𝑃:(0...(#‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
20 df-f1 5931 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...2)–1-1𝑉 ↔ (𝑃:(0...2)⟶𝑉 ∧ Fun 𝑃))
2120simplbi2 654 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...2)⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉))
2221a1i 11 . . . . . . . . . . . . . . . . . . 19 ((#‘𝐹) = 2 → (𝑃:(0...2)⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2319, 22sylbid 230 . . . . . . . . . . . . . . . . . 18 ((#‘𝐹) = 2 → (𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2423adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun 𝑃𝑃:(0...2)–1-1𝑉)))
2524com3l 89 . . . . . . . . . . . . . . . 16 (𝑃:(0...(#‘𝐹))⟶𝑉 → (Fun 𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉)))
26253ad2ant2 1103 . . . . . . . . . . . . . . 15 ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (Fun 𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉)))
2726imp 444 . . . . . . . . . . . . . 14 (((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉))
2827adantl 481 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → 𝑃:(0...2)–1-1𝑉))
296, 7usgr2pthlem 26715 . . . . . . . . . . . . . 14 ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
3029ad2antrl 764 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))
3117, 28, 303jcad 1262 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
3231ex 449 . . . . . . . . . . 11 (𝐺 ∈ UPGraph → (((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
339, 32sylbid 230 . . . . . . . . . 10 (𝐺 ∈ UPGraph → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
345, 33sylbid 230 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
3534com23 86 . . . . . . . 8 (𝐺 ∈ UPGraph → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
363, 35mpcom 38 . . . . . . 7 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
371, 36sylbid 230 . . . . . 6 ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
3837ex 449 . . . . 5 (𝐺 ∈ USGraph → ((#‘𝐹) = 2 → (𝐹(Paths‘𝐺)𝑃 → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
3938com13 88 . . . 4 (𝐹(Paths‘𝐺)𝑃 → ((#‘𝐹) = 2 → (𝐺 ∈ USGraph → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))))
4039imp 444 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) → (𝐺 ∈ USGraph → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
4140com12 32 . 2 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) → (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
42 2nn0 11347 . . . . . 6 2 ∈ ℕ0
43 f1f 6139 . . . . . 6 (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^2)⟶dom 𝐼)
44 fnfzo0hash 13272 . . . . . 6 ((2 ∈ ℕ0𝐹:(0..^2)⟶dom 𝐼) → (#‘𝐹) = 2)
4542, 43, 44sylancr 696 . . . . 5 (𝐹:(0..^2)–1-1→dom 𝐼 → (#‘𝐹) = 2)
46 oveq2 6698 . . . . . . . . . . . . . . . . . 18 (2 = (#‘𝐹) → (0..^2) = (0..^(#‘𝐹)))
4746eqcoms 2659 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) = 2 → (0..^2) = (0..^(#‘𝐹)))
48 f1eq2 6135 . . . . . . . . . . . . . . . . 17 ((0..^2) = (0..^(#‘𝐹)) → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼))
4947, 48syl 17 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼))
5049biimpd 219 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼))
5150imp 444 . . . . . . . . . . . . . 14 (((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)
5251adantr 480 . . . . . . . . . . . . 13 ((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)
5352ad2antrr 762 . . . . . . . . . . . 12 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)
54 f1f 6139 . . . . . . . . . . . . . . 15 (𝑃:(0...2)–1-1𝑉𝑃:(0...2)⟶𝑉)
55 oveq2 6698 . . . . . . . . . . . . . . . . . 18 (2 = (#‘𝐹) → (0...2) = (0...(#‘𝐹)))
5655eqcoms 2659 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) = 2 → (0...2) = (0...(#‘𝐹)))
5756adantr 480 . . . . . . . . . . . . . . . 16 (((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (0...2) = (0...(#‘𝐹)))
5857feq2d 6069 . . . . . . . . . . . . . . 15 (((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)⟶𝑉𝑃:(0...(#‘𝐹))⟶𝑉))
5954, 58syl5ib 234 . . . . . . . . . . . . . 14 (((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) → (𝑃:(0...2)–1-1𝑉𝑃:(0...(#‘𝐹))⟶𝑉))
6059imp 444 . . . . . . . . . . . . 13 ((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → 𝑃:(0...(#‘𝐹))⟶𝑉)
6160ad2antrr 762 . . . . . . . . . . . 12 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝑃:(0...(#‘𝐹))⟶𝑉)
62 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘0) = 𝑥𝑥 = (𝑃‘0))
6362biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘0) = 𝑥𝑥 = (𝑃‘0))
64633ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑥 = (𝑃‘0))
65 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘1) = 𝑦𝑦 = (𝑃‘1))
6665biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘1) = 𝑦𝑦 = (𝑃‘1))
67663ad2ant2 1103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑦 = (𝑃‘1))
6864, 67preq12d 4308 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑥, 𝑦} = {(𝑃‘0), (𝑃‘1)})
6968eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ↔ (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7069biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7170adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
7271impcom 445 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})
73 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃‘2) = 𝑧𝑧 = (𝑃‘2))
7473biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃‘2) = 𝑧𝑧 = (𝑃‘2))
75743ad2ant3 1104 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → 𝑧 = (𝑃‘2))
7667, 75preq12d 4308 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → {𝑦, 𝑧} = {(𝑃‘1), (𝑃‘2)})
7776eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} ↔ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7877biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼‘(𝐹‘1)) = {𝑦, 𝑧} → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7978adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}) → (((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8079impcom 445 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})
8172, 80jca 553 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8281rexlimivw 3058 . . . . . . . . . . . . . . . . . . 19 (∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8382rexlimivw 3058 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8483rexlimivw 3058 . . . . . . . . . . . . . . . . 17 (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
8584a1i13 27 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 2 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
86 fzo0to2pr 12593 . . . . . . . . . . . . . . . . . . . 20 (0..^2) = {0, 1}
8710, 86syl6eq 2701 . . . . . . . . . . . . . . . . . . 19 ((#‘𝐹) = 2 → (0..^(#‘𝐹)) = {0, 1})
8887raleqdv 3174 . . . . . . . . . . . . . . . . . 18 ((#‘𝐹) = 2 → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
89 2wlklem 26619 . . . . . . . . . . . . . . . . . 18 (∀𝑖 ∈ {0, 1} (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
9088, 89syl6bb 276 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) = 2 → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))
9190imbi2d 329 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 2 → ((𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐺 ∈ USGraph → ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
9285, 91sylibrd 249 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 2 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
9392ad2antrr 762 . . . . . . . . . . . . . 14 ((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
9493imp 444 . . . . . . . . . . . . 13 (((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
9594imp 444 . . . . . . . . . . . 12 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
9653, 61, 953jca 1261 . . . . . . . . . . 11 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
9720simprbi 479 . . . . . . . . . . . . 13 (𝑃:(0...2)–1-1𝑉 → Fun 𝑃)
9897adantl 481 . . . . . . . . . . . 12 ((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) → Fun 𝑃)
9998ad2antrr 762 . . . . . . . . . . 11 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → Fun 𝑃)
10096, 99jca 553 . . . . . . . . . 10 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃))
1015, 9bitrd 268 . . . . . . . . . . . 12 (𝐺 ∈ UPGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
1022, 101syl 17 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
103102adantl 481 . . . . . . . . . 10 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(SPaths‘𝐺)𝑃 ↔ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ Fun 𝑃)))
104100, 103mpbird 247 . . . . . . . . 9 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(SPaths‘𝐺)𝑃)
105 simpr 476 . . . . . . . . . 10 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ USGraph)
106 simp-4l 823 . . . . . . . . . 10 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (#‘𝐹) = 2)
107105, 106, 1syl2anc 694 . . . . . . . . 9 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃))
108104, 107mpbird 247 . . . . . . . 8 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → 𝐹(Paths‘𝐺)𝑃)
109108, 106jca 553 . . . . . . 7 ((((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) ∧ 𝐺 ∈ USGraph) → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))
110109ex 449 . . . . . 6 (((((#‘𝐹) = 2 ∧ 𝐹:(0..^2)–1-1→dom 𝐼) ∧ 𝑃:(0...2)–1-1𝑉) ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2)))
111110exp41 637 . . . . 5 ((#‘𝐹) = 2 → (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1𝑉 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2))))))
11245, 111mpcom 38 . . . 4 (𝐹:(0..^2)–1-1→dom 𝐼 → (𝑃:(0...2)–1-1𝑉 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2)))))
1131123imp 1275 . . 3 ((𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐺 ∈ USGraph → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2)))
114113com12 32 . 2 (𝐺 ∈ USGraph → ((𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))) → (𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2)))
11541, 114impbid 202 1 (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (#‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼𝑃:(0...2)–1-1𝑉 ∧ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  cdif 3604  {csn 4210  {cpr 4212   class class class wbr 4685  ccnv 5142  dom cdm 5143  Fun wfun 5920  wf 5922  1-1wf1 5923  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  2c2 11108  0cn0 11330  ...cfz 12364  ..^cfzo 12504  #chash 13157  Vtxcvtx 25919  iEdgciedg 25920  UPGraphcupgr 26020  USGraphcusgr 26089  Trailsctrls 26643  Pathscpths 26664  SPathscspths 26665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-edg 25985  df-uhgr 25998  df-upgr 26022  df-umgr 26023  df-uspgr 26090  df-usgr 26091  df-wlks 26551  df-wlkson 26552  df-trls 26645  df-trlson 26646  df-pths 26668  df-spths 26669  df-pthson 26670  df-spthson 26671
This theorem is referenced by:  usgr2pth0  26717
  Copyright terms: Public domain W3C validator